首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social science and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this article, we consider multilevel latent class models, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the expectation‐maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less‐efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the obsessive compulsive disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for LCA of multilevel data.  相似文献   

2.
Zhu J  Eickhoff JC  Yan P 《Biometrics》2005,61(3):674-683
Observations of multiple-response variables across space and over time occur often in environmental and ecological studies. Compared to purely spatial models for a single response variable in the exponential family of distributions, fewer statistical tools are available for multiple-response variables that are not necessarily Gaussian. An exception is a common-factor model developed for multivariate spatial data by Wang and Wall (2003, Biostatistics 4, 569-582). The purpose of this article is to extend this multivariate space-only model and develop a flexible class of generalized linear latent variable models for multivariate spatial-temporal data. For statistical inference, maximum likelihood estimates and their standard deviations are obtained using a Monte Carlo EM algorithm. We also use a novel way to automatically adjust the Monte Carlo sample size, which facilitates the convergence of the Monte Carlo EM algorithm. The methodology is illustrated by an ecological study of red pine trees in response to bark beetle challenges in a forest stand of Wisconsin.  相似文献   

3.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

4.
In epidemiology, capture–recapture models are commonly used to estimate the size of an unknown population based on several incomplete lists of individuals. The method operates under two main assumptions: independence between the lists (local independence) and homogeneity of capture probabilities of individuals. In practice, these assumptions are rarely satisfied. We introduce a multinomial latent class model that can account for both list dependence and heterogeneity. Parameter estimation is performed by maximizing the conditional likelihood function with the use of the EM algorithm. In addition, a new approach for evaluating the standard errors of the parameter estimates is discussed, which considerably reduces the computational burden associated with the evaluation of the variance of the population size estimate.  相似文献   

5.
A method is proposed that aims at identifying clusters of individuals that show similar patterns when observed repeatedly. We consider linear‐mixed models that are widely used for the modeling of longitudinal data. In contrast to the classical assumption of a normal distribution for the random effects a finite mixture of normal distributions is assumed. Typically, the number of mixture components is unknown and has to be chosen, ideally by data driven tools. For this purpose, an EM algorithm‐based approach is considered that uses a penalized normal mixture as random effects distribution. The penalty term shrinks the pairwise distances of cluster centers based on the group lasso and the fused lasso method. The effect is that individuals with similar time trends are merged into the same cluster. The strength of regularization is determined by one penalization parameter. For finding the optimal penalization parameter a new model choice criterion is proposed.  相似文献   

6.
Roy J  Lin X 《Biometrics》2000,56(4):1047-1054
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from different perspectives. We relate the observed outcomes using regression models to a latent variable, which is then modeled as a function of covariates by a separate regression model. Random effects are used to model the correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the latent variables are also calculated. This method is illustrated using data from a national panel study on changes in methadone treatment practices.  相似文献   

7.
Current status data arise due to only one feasible examination such that the failure time of interest occurs before or after the examination time. If the examination time is intrinsically related to the failure time of interest, the examination time is referred to as an informative censoring time. Such data may occur in many fields, for example, epidemiological surveys and animal carcinogenicity experiments. To avoid severely misleading inferences resulted from ignoring informative censoring, we propose a class of semiparametric transformation models with log‐normal frailty for current status data with informative censoring. A shared frailty is used to account for the correlation between the failure time and censoring time. The expectation‐maximization (EM) algorithm combining a sieve method for approximating an infinite‐dimensional parameter is employed to estimate all parameters. To investigate finite sample properties of the proposed method, simulation studies are conducted, and a data set from a rodent tumorigenicity experiment is analyzed for illustrative purposes.  相似文献   

8.
Summary In diagnostic medicine, estimating the diagnostic accuracy of a group of raters or medical tests relative to the gold standard is often the primary goal. When a gold standard is absent, latent class models where the unknown gold standard test is treated as a latent variable are often used. However, these models have been criticized in the literature from both a conceptual and a robustness perspective. As an alternative, we propose an approach where we exploit an imperfect reference standard with unknown diagnostic accuracy and conduct sensitivity analysis by varying this accuracy over scientifically reasonable ranges. In this article, a latent class model with crossed random effects is proposed for estimating the diagnostic accuracy of regional obstetrics and gynaecological (OB/GYN) physicians in diagnosing endometriosis. To avoid the pitfalls of models without a gold standard, we exploit the diagnostic results of a group of OB/GYN physicians with an international reputation for the diagnosis of endometriosis. We construct an ordinal reference standard based on the discordance among these international experts and propose a mechanism for conducting sensitivity analysis relative to the unknown diagnostic accuracy among them. A Monte Carlo EM algorithm is proposed for parameter estimation and a BIC‐type model selection procedure is presented. Through simulations and data analysis we show that this new approach provides a useful alternative to traditional latent class modeling approaches used in this setting.  相似文献   

9.
The diagnosis/prognosis problem has already been introduced by the authors in previous papers as a classification problem for survival data. In this paper, the specific aspects of the estimation of the survival functions in diagnostic classes and the evaluation of the posterior probabilities of the diagnostic classes are addressed; a latent random variable Z is defined to denote the classification of censored and uncensored individuals, where early censored individuals cannot be immediately classified as Z is not observed. Parameter estimation of the mixture survival model thus derived is carried out using a proper version of the EM algorithm with given prior probabilities on Z and diagnostic/prognostic information provided by the observable covariates is also included into the model. Numerical examples using AIDS data and a simulation study are used to better outline the main features of the model and of the estimation methodology.  相似文献   

10.
Pan W  Lin X  Zeng D 《Biometrics》2006,62(2):402-412
We propose a new class of models, transition measurement error models, to study the effects of covariates and the past responses on the current response in longitudinal studies when one of the covariates is measured with error. We show that the response variable conditional on the error-prone covariate follows a complex transition mixed effects model. The naive model obtained by ignoring the measurement error correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measurement error for both continuous and discrete outcomes. We show that the naive estimator of the regression coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients of the past responses are generally inflated. We then develop a structural modeling approach for parameter estimation using the maximum likelihood estimation method. In view of the multidimensional integration required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum likelihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in the E-step. We evaluate the performance of the proposed method through a simulation study and apply it to a longitudinal social support study for elderly women with heart disease. An additional simulation study shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders of the models.  相似文献   

11.
Maximum likelihood methods for cure rate models with missing covariates   总被引:1,自引:0,他引:1  
Chen MH  Ibrahim JG 《Biometrics》2001,57(1):43-52
We propose maximum likelihood methods for parameter estimation for a novel class of semiparametric survival models with a cure fraction, in which the covariates are allowed to be missing. We allow the covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one-dimensional conditional distributions. We propose a novel EM algorithm for maximum likelihood estimation and derive standard errors by using Louis's formula (Louis, 1982, Journal of the Royal Statistical Society, Series B 44, 226-233). Computational techniques using the Monte Carlo EM algorithm are discussed and implemented. A real data set involving a melanoma cancer clinical trial is examined in detail to demonstrate the methodology.  相似文献   

12.
The analysis of nonlinear function-valued characters is very important in genetic studies, especially for growth traits of agricultural and laboratory species. Inference in nonlinear mixed effects models is, however, quite complex and is usually based on likelihood approximations or Bayesian methods. The aim of this paper was to present an efficient stochastic EM procedure, namely the SAEM algorithm, which is much faster to converge than the classical Monte Carlo EM algorithm and Bayesian estimation procedures, does not require specification of prior distributions and is quite robust to the choice of starting values. The key idea is to recycle the simulated values from one iteration to the next in the EM algorithm, which considerably accelerates the convergence. A simulation study is presented which confirms the advantages of this estimation procedure in the case of a genetic analysis. The SAEM algorithm was applied to real data sets on growth measurements in beef cattle and in chickens. The proposed estimation procedure, as the classical Monte Carlo EM algorithm, provides significance tests on the parameters and likelihood based model comparison criteria to compare the nonlinear models with other longitudinal methods.  相似文献   

13.
Bartolucci F  Pennoni F 《Biometrics》2007,63(2):568-578
We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations.  相似文献   

14.
We consider situations where the incomplete nature of the observed data causes identifiability problem. Rather than imposing identifiability constraints on the parameters and then implement the EM algorithm subject to these constraints, we argue that for certain problems, an easier option is to ignore the constraints during the M‐steps of the EM procedure. We also suggest a way of carrying out constrained maximization approximately by using Cox and Wermuth's (1990) method for approximating the constrained maximizers from the unconstrained ones at each M‐step. The simplicity and validity of the unconstrained EM procedure are demonstrated using three examples involving bivariate probit regression, multivariate normal order statistics model and the multinominal distribution. Potential applications to more complicated models are also outlined.  相似文献   

15.
This paper presents procedures for implementing the EM algorithm to compute REML estimates of variance covariance components in Gaussian mixed models for longitudinal data analysis. The class of models considered includes random coefficient factors, stationary time processes and measurement errors. The EM algorithm allows separation of the computations pertaining to parameters involved in the random coefficient factors from those pertaining to the time processes and errors. The procedures are illustrated with Pothoff and Roy''s data example on growth measurements taken on 11 girls and 16 boys at four ages. Several variants and extensions are discussed.  相似文献   

16.
Summary HIV dynamics studies, based on differential equations, have significantly improved the knowledge on HIV infection. While first studies used simplified short‐term dynamic models, recent works considered more complex long‐term models combined with a global analysis of whole patient data based on nonlinear mixed models, increasing the accuracy of the HIV dynamic analysis. However statistical issues remain, given the complexity of the problem. We proposed to use the SAEM (stochastic approximation expectation‐maximization) algorithm, a powerful maximum likelihood estimation algorithm, to analyze simultaneously the HIV viral load decrease and the CD4 increase in patients using a long‐term HIV dynamic system. We applied the proposed methodology to the prospective COPHAR2–ANRS 111 trial. Very satisfactory results were obtained with a model with latent CD4 cells defined with five differential equations. One parameter was fixed, the 10 remaining parameters (eight with between‐patient variability) of this model were well estimated. We showed that the efficacy of nelfinavir was reduced compared to indinavir and lopinavir.  相似文献   

17.
We introduce a method of parameter estimation for a random effects cure rate model. We also propose a methodology that allows us to account for nonignorable missing covariates in this class of models. The proposed method corrects for possible bias introduced by complete case analysis when missing data are not missing completely at random and is motivated by data from a pair of melanoma studies conducted by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was suspected. In addition, these models allow estimation of cure rates, which is desirable when we do not wish to assume that all subjects remain at risk of death or relapse from disease after sufficient follow-up. We develop an EM algorithm for the model and provide an efficient Gibbs sampling scheme for carrying out the E-step of the algorithm.  相似文献   

18.
Lee SY  Shi JQ 《Biometrics》2001,57(3):787-794
Two-level data with hierarchical structure and mixed continuous and polytomous data are very common in biomedical research. In this article, we propose a maximum likelihood approach for analyzing a latent variable model with these data. The maximum likelihood estimates are obtained by a Monte Carlo EM algorithm that involves the Gibbs sampler for approximating the E-step and the M-step and the bridge sampling for monitoring the convergence. The approach is illustrated by a two-level data set concerning the development and preliminary findings from an AIDS preventative intervention for Filipina commercial sex workers where the relationship between some latent quantities is investigated.  相似文献   

19.
Xie M  Simpson DG 《Biometrics》1999,55(1):308-316
This paper develops regression models for ordinal data with nonzero control response probabilities. The models are especially useful in dose-response studies where the spontaneous or natural response rate is nonnegligible and the dosage is logarithmic. These models generalize Abbott's formula, which has been commonly used to model binary data with nonzero background observations. We describe a biologically plausible latent structure and develop an EM algorithm for fitting the models. The EM algorithm can be implemented using standard software for ordinal regression. A toxicology data set where the proposed model fits the data but a more conventional model fails is used to illustrate the methodology.  相似文献   

20.
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号