首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards") can sense modification of target molecules in the host (the "guardees") by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen.  相似文献   

2.
Genetic incompatibility is a hallmark of speciation. Cytonuclear incompatibilities are proposed to be among the first genetic barriers to arise during speciation. Accordingly, reproductive isolation (RI) within species should be heavily influenced by interactions between the organelle and nuclear genomes. However, there are few clear examples of cytonuclear incompatibility within a species. Here, we show substantial postzygotic RI in first‐generation hybrids between differentiated populations of an herbaceous plant (up to 92% reduction in fitness). RI was primarily due to germination and survival, with moderate RI for pollen viability. RI for survival was asymmetric and caused by cytonuclear incompatibility, with the strength of incompatibility linearly related to chloroplast genetic distance. This cytonuclear incompatibility may be the result of a rapidly evolving plastid genome. Substantial asymmetric RI was also found for germination, but was not associated with cytonuclear incompatibility, indicating endosperm or maternal‐zygote incompatibilities. These results demonstrate that cytonuclear incompatibility contributes to RI within species, suggesting that initial rates of speciation could be influenced by rates of organelle evolution. However, other genetic incompatibilities are equally important, indicating that even at early stages, speciation can be a complex process involving multiple genes and incompatibilities.  相似文献   

3.
Fungal effector proteins: past, present and future   总被引:1,自引:0,他引:1  
The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence ( Avr ) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and map-based cloning from model organisms, but, currently, the availability of many sequenced fungal genomes allows their cloning from additional fungi by a combination of comparative and functional genomics. It is believed that most Avr genes encode effectors that facilitate virulence by suppressing pathogen-associated molecular pattern-triggered immunity and induce effector-triggered immunity in plants containing cognate resistance proteins. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either on the plasma membrane or inside the plant cell. Indirect recognition of an effector (also known as the guard model) implies that the virulence target of an effector in the host (the guardee) is guarded by the resistance protein (the guard) that senses manipulation of the guardee, leading to activation of effector-triggered immunity. In this article, we review the literature on fungal effectors and some pathogen-associated molecular patterns, including those of some fungi for which no gene-for-gene relationship has been established.  相似文献   

4.
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts.  相似文献   

5.
The interplay between pathogen effectors, their host targets, and cognate recognition proteins provides various opportunities for antagonistic cycles of selection acting on plant and pathogen to achieve or abrogate resistance, respectively. Selection has previously been shown to maintain diversity in plant proteins involved in pathogen recognition and some of their cognate pathogen effectors. We analyzed the signatures of selection on 10 Arabidopsis thaliana genes encoding defense signal transduction proteins in plants, which are potential targets of pathogen effectors. There was insufficient evidence to reject neutral evolution for 6 genes encoding signaling components consistent with these proteins not being targets of effectors and/or indicative of constraints on their ability to coevolve with pathogen effectors. Functional constraints on effector targets may have provided the driving selective force for the evolution of guard proteins. PBS1, a known target of an effector, showed little variation but is known to be monitored by a variable guard protein. Evidence of selection maintaining diversity was present at NPR1, PAD4, and EDS1. Differences in the signatures of selection observed may reflect the numbers of effectors that target a particular protein, the presence or absence of a cognate guard protein, as well as functional constraints imposed by biochemical activities or interactions with plant proteins.  相似文献   

6.
7.
In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N‐terminal cell death effector domain, a central NACHT domain and a C‐terminal WD‐repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD‐repeat domain responsible for recognition of non‐self. Remarkably, the architecture of these proteins is related to pathogen‐recognition receptors ensuring innate immunity in plants and animals. Here, we hypothesize that these P. anserina incompatibility genes could be components of a yet‐unidentified innate immune system of fungi. As already proposed in the case of plant hybrid necrosis or graft rejection in mammals, incompatibility could be a by‐product of pathogen‐driven divergence in host defense genes.  相似文献   

8.
Speciation is intimately associated with the evolution of sex-and-reproduction-related traits, including those affecting hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation). Genes controlling such traits are not randomly distributed in the genome but are particularly abundant on the sex chromosomes. However, the evolutionary consequences of the sex linkage of genes involved in speciation have been little explored. Here, we present simulations of a continent-island diploid model that examines the effects of reduced recombination using both autosomal and sex-linked inheritance. We show first that linkage between genes affecting postzygotic and prezygotic isolation leads to a positive feedback loop in which both are strengthened. As species recognition evolves, genes causing hybrid incompatibility will hitchhike along with those improving premating isolation, leading to stronger hybrid incompatibility and thus increased pressure for further preference divergence. Second, we show that this loop effect is generally enhanced by sex linkage, because recombination is eliminated in the heterogametic sex, leading to tighter effective linkage between the two classes of genes and because natural selection is more efficient at sex-linked loci, as recessive alleles are not masked by dominance in the heterogametic sex. Accordingly, hitchhiking can be important in promoting speciation and can also lead to increased postzygotic isolation through adaptive evolution.  相似文献   

9.
Postzygotic reproductive isolation, based on negative interactions of genes, is a key aspect of divergent speciation in plants and animals. The effect of the interaction manifests as a drastic reduction in fitness of hybrids of the first of subsequent generations, which is expressed as hybrid lethality, weakness or sterility. Both simple genetic control of genetic incompatibility, which includes interallelic negative complementation or epistatic interactions of a limited number of genes, and more complex control, based on epistatic interactions of many genes, have been described in plants. It is thought that genes for reproductive isolation are nonuniformly distributed over the genome and are related to differential adaptation. The mosaic organization of the genomes in this respect provides restoration of their structural and functional integrity upon interspecies hybridization in natural conditions. Many cultured and wild plant species, in contrast to animals, were found to be polymorphic at genes controlling interspecies incompatibility. This fact facilitates genetic analysis of incompatibility and broadens perspectives in studying the structure, functions, and molecular evolution of the genes controlling postzygotic reproductive isolation, in view of the possible leading role of these genes in adaptive speciation.  相似文献   

10.

Background

The evolution of reproductive traits, such as hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation), have shown their key role in speciation. Theoretical modeling has recently predicted that close linkage between genes controlling pre- and postzygotic reproductive isolation could accelerate the conditions for speciation. Postzygotic isolation could develop during the sympatric speciation process contributing to the divergence of populations. Using hybrid fitness as a measure of postzygotic reproductive isolation, we empirically studied population divergence in perch (Perca fluviatilis L.) from two genetically divergent populations within a lake.

Results

During spawning time of perch we artificially created parental offspring and F1 hybrids of the two populations and studied fertilization rate and hatching success under laboratory conditions. The combined fitness measure (product of fertilization rate and hatching success) of F1 hybrids was significantly reduced compared to offspring from within population crosses.

Conclusion

Our results suggest intrinsic genetic incompatibility between the two populations and indicate that population divergence between two populations of perch inhabiting the same lake may indeed be promoted by postzygotic isolation.  相似文献   

11.
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host‐plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a “universal” host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents’ hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host‐dependent postzygotic isolation has continued to evolve late in divergence. Even though host‐independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.  相似文献   

12.
Jacob C. Cooper 《Fly》2016,10(3):142-148
Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.  相似文献   

13.
The host–pathogen interactions of Musa spp. and Mycosphaerella fijiensis were investigated in order to determine the function of secondary metabolites within the pathosystem of the Black Sigatoka disease. The pentaketide metabolites flaviolin, 2-hydroxyjuglone, juglone and 2,4,8-trihydroxytetralone (2,4,8-THT) of the pathogen were identified. The concentration of 2,4,8-THT was significantly increased by application of the synthetic compound tricyclazole and by natural activators extracted from the intercellular space of leaf tissue of resistant Musa cultivars. When inoculated host plants were treated with tricyclazole, extensive necrosis of both susceptible and resistant Musa cultivar leaves were observed. Plant defence mechanisms of resistant Musa cultivars were first detected as an activation of phenylalanine–ammonia lyase and the subsequent accumulation of post-infectional substances which blocked fungal growth. These results indicated the bivalent importance of 2,4,8-THT for host-specific reactions, depending on its concentration at different stages of pathogenesis. Early activation of fungal 2,4,8-THT metabolism by resistant Musa cultivars caused necrotic micro-lesions and elicitation of post-infectional defence reactions leading to incompatibility between pathogen and host plant; growth of the fungus on susceptible cultivars caused necrotizing doses of 2,4,8-THT only after the establishment of a compatible interaction and development of typical symptoms at late stages of pathogenesis.  相似文献   

14.
In birds and frogs, species pairs retain the capacity to produce viable hybrids for tens of millions of years, an order of magnitude longer than mammals. What accounts for these differences in relative rates of pre- and postzygotic isolation? We propose that reproductive mode is a critically important but previously overlooked factor in the speciation process. Viviparity creates a post-fertilization arena for genomic conflicts absent in egg-laying species. With viviparity, conflict can arise between: mothers and embryos; sibling embryos in the womb, and maternal and paternal genomes within individual embryos. Such intra- and intergenomic conflicts result in perpetual antagonistic coevolution, thereby accelerating interpopulation postzygotic isolation. In addition, by generating intrapopulation genetic incompatibility, viviparity-driven conflict favors polyandry and limits the potential for precopulatory divergence. Mammalian diversification is characterized by rapid evolution of incompatible feto-maternal interactions, asymmetrical postzygotic isolation, disproportionate effects of genomically-imprinted genes, and "F(2) hybrid enhancement. " The viviparity-driven conflict hypothesis provides a parsimonious explanation for these patterns in mammalian evolution.  相似文献   

15.
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.  相似文献   

16.
We develop a spatially explicit model for the within-host interactions between a fungal pathogen and the immune response by its coral host. The model is parameterized for the recent epizootic of Aspergillus sydowii in the sea fan Gorgonia ventalina, but its structure is adaptable to many other diseases attacking corals worldwide, fungal infections in other invertebrates and plants, and opportunistic fungal infections in vertebrates. Model processes include pathogen growth and spread through consumption of host tissue, chemotactic attraction of undifferentiated host amoebocytes to infections, and amoebocyte differentiation into various cell types that attack the pathogen. Sensitivity analysis shows that the spread rate of a single localized infection is determined primarily by the pathogen's potential rate of host tissue consumption and by the host's ability to replenish the pool of undifferentiated amoebocytes and sustain a long-term response. The spatial localization of immune responses creates potentially strong indirect interactions between distant lesions, allowing new infections to grow rapidly while host resources are concentrated at older, larger infections. These findings provide possible mechanistic explanations for effects of environmental stressors (e.g., ocean warming, nutrient enrichment) on aspergillosis prevalence and severity and for the observed high spatial and between-host variability in disease impacts.  相似文献   

17.
The development of hybrid sterility is an important step in the process of speciation, however the role of adaptive evolution in triggering these postzygotic barriers is poorly understood. We show that, in the California endemic plant Collinsia sparsiflora, ecotypic adaptation to two distinct soil types is associated with the expression of intrinsic F1 hybrid sterility between ecotypes, over spatial scales of less than 1?km. First, we show that hybrids between soil-adapted ecotypes are less fertile than hybrids within soil ecotypes. Second, we show that between-ecotype postzygotic incompatibility is insensitive to soil growth environment, and can therefore operate under conditions relevant to both ecotypes in the wild. Third, we confirm there is little genetic differentiation between ecotypes using molecular markers, indicating that these postzygotic barriers are recently evolved. Finally, we explore specific soil attributes that might be the source of selective differentiation that confers hybrid sterility. Our results indicate that hybrid barriers are developing in response to strong adaptive differentiation between adjacent and very recently diverged lineages, despite likely ongoing gene exchange.  相似文献   

18.
Our laboratory found that silverleaf whitefly (SLW; Bemisia argentifolii Bellows & Perring) feeding alters host plant physiology and chemistry. The SLW induces a number of host plant defenses, including pathogenesis-related (PR) protein accumulation (e.g., chitinases, beta-1,3-glucanases, peroxidases, chitosanases, etc.). Induction of the PR proteins by SLW feeding occurs in various plant species and varieties. The extent and type of induction is dependent on a number of factors that include host plant growing conditions, the length of time the host plant is exposed to SLW feeding, the plant variety, and SLW population densities. The appearance of PR proteins correlates well with reduced infestations of conspecific insect herbivore competitors. Greenhouse and field experiments in which herbivore competitors (cabbage looper, Trichoplusia ni; leaf miner, Liromyza trifolii) were placed on plants previously exposed to SLW feeding demonstrated behavioral differences (oviposition, feeding preferences) and reduced survival rates and development times of these insects. The interaction was asymmetrical, i.e., SLW infestations of plants previously exposed to leaf miners had little or no effect on SLW behavior (oviposition). Induction of plant-defensive proteins by SLW feeding was both local (at the feeding site) and systemic (uninfested leaves distant to the feeding site). There are interactions between diseases such as tomato mottle virus (ToMoV; a geminivirus) and the host plant and SLW. PR proteins were induced in tomato plants infected with ToMoV much as they were via non-viruliferous SLW feeding. The presence of ToMoV in tomato plants significantly increased the number of eggs produced by SLW females. Experiments using tomato plants, powdery mildew (PM), and tobacco mosaic virus (TMV) show that whitefly infestations can affect plant pathogen relationships but the effects vary among pathogen types. Enzyme analyses prior to pathogen inoculation showed that whitefly treatment significantly increased the activities of foliar chitinase and peroxidase. Evaluation of pathogen growth 3 weeks after inoculation showed that whitefly feeding significantly reduced the incidence of PM. However, TMV levels evaluated by ELISA were not significantly affected by whitefly feeding. Six weeks after inoculation with pathogens, the chitinase and peroxidase activities were still elevated in plants initially fed on by whiteflies but continuing pathogen infection had no effect on these enzymes. The possibility that geminivirus infection and/or SLW infestations isolate the host plant for the selected reproduction of the virus and the insect is discussed. Multitrophic cascade effects may contribute to the successful eruptive appearance of SLW on various crops, ranking them as a major pest. They may explain the general observation that when SLW infest a host plant there are few if any competing insect herbivores and pathogens found in the host. However, the results indicate that certain SLW-virus relationships could be mutualistic.  相似文献   

19.
The crucial phase of speciation is argued to be the evolution of mating cross-incompatibility (prezygotic incompatibility) between the genotypes distinguishing the prospective species populations. Based on this idea, a single-locus model of speciation is presented, which is shown to be biologically plausible and may help to settle the controversy as to the biological significance of single-locus modes of speciation. The model involves three alleles, two of which characterize in homozygous state the prospective species populations and in heterozygous state their hybrids. The third allele represents a mutant which is equivalent to one of the first two alleles with the exception that it inhibits mating with carriers of the third allele. This third allele is fixed in one population and immigrates into a second population which contains the mutant inhibiting matings with members of the former population. Migration in the reverse direction does not occur. Proceeding from a widely applicable concept of fitness and mating preference it is shown that postzygotic incompatibility (hybrid or heterozygote disadvantage) alone suffices to trigger evolutionary replacement of the extant mating relations in the population receiving immigrants by any arbitrary degree of prezygotic incompatibility. This corroborates Wallace's hypothesis and emphasizes the potential biological relevance of speciation by reinforcement (parapatric speciation) at single gene loci.  相似文献   

20.
Any given pathogenic microbial species typically colonizes a limited number of plant species. Plant species outside of this host range mount nonhost disease resistance to attempted colonization by the, in this case, non-adapted pathogen. The underlying mechanism of nonhost immunity and host immunity involves the same non-self detection systems, the combined action of nucleotide-binding and leucine-rich repeat (NB-LRR) proteins and pattern recognition receptors (PRRs). Here we hypothesize that the relative contribution of NB-LRR- and PRR-triggered immunity to nonhost resistance changes as a function of phylogenetic divergence time between host and nonhost. Similarly, changes in pathogen host range, e.g. host range expansions, appear to be driven by variation in pathogen effector repertoires, in turn leading to reproductive isolation and subsequent pathogen speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号