首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need for restoration of shrubs is increasingly recognized around the world. In the western United States, restoration of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) after controlling encroaching conifers is a priority to improve sagebrush‐associated wildlife habitat. Conifers can be cost effectively removed with prescribed burning when sagebrush is codominant; however, burning removes sagebrush and natural recovery may be slow. We evaluated seeding mountain and Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) on north and south aspects after western juniper (Juniperus occidentalis ssp. occidentalis Hook) control with prescribed burning. We included seeding Wyoming big sagebrush, a more drought tolerant subspecies of big sagebrush, because it might grow better than mountain big sagebrush on hot, dry south slopes, during drought, or after juniper encroachment. Seeding mountain big sagebrush increased sagebrush cover and density compared to unseeded controls. In mountain big sagebrush‐seeded plots, sagebrush cover was 19 times greater on north compared to south aspects in the fourth year after seeding. At this time, sagebrush cover was also greater on mountain compared to Wyoming big sagebrush‐seeded plots. Natural recovery (i.e. unseeded) of sagebrush was occurring on north aspects with sagebrush cover averaging 3% 4 years after fire. Sagebrush was not detected on unseeded south aspects at the end of the study. These results suggest that postfire sagebrush recovery, with and without seeding, will be variable across the landscape based on topography. This study suggests seeding sagebrush after controlling junipers with burning may accelerate sagebrush recovery.  相似文献   

2.
The mining industry commonly seeds shrubs and grasses concurrently on coal‐mined lands of northeastern Wyoming, but ecological interactions between seeded shrubs and grasses are not well documented. Artemisia tridentata Nutt. ssp. wyomingensis (Beetle and Young) (Wyoming big sagebrush) is the dominant pre‐mining shrub on many Wyoming mine sites. Despite past failures to establish Wyoming big sagebrush, the Wyoming Department of Environmental Quality, Land Quality Division's rules and regulations require establishment of 1 shrub per m2 on 20% of post‐mined land in Wyoming. A study was established at the Belle Ayr Coal Mine south of Gillette, Wyoming to evaluate the effects of sagebrush seeding rates and grass competition on Wyoming big sagebrush seedling density. Three sagebrush seeding rates (1, 2, and 4 kg pure live seed [pls]/ha; 350, 700, and 1,400 pls/m2, respectively) and seven cool‐season perennial grass mixture seeding rates (0, 2, 4, 6, 8, 10, and 14 kg pls/ha; 0, 187, 374, 561, 750, 935, and 1,309 pls/m2, respectively) were applied during winter 1998–1999. Pascopyrum smithii (Rydb.) A. Love (western wheatgrass), Elymus lanceolatus (Scribner & J.G. Smith) Gould (thickspike wheatgrass), and Elymus trachycaulus (Link) Gould ex Shinners (slender wheatgrass) comprised the grass seed mix (equal seed numbers of each species). Sagebrush seedling density differed among sagebrush seeding rates but not among grass seeding rates. On all sampling dates in 1999 and 2000, sagebrush seedling density differed among sagebrush rates and was greatest at the 4 kg pls/ha sagebrush seeding rate. All sagebrush seeding rates provided densities of at least 1 shrub per m2 after two growing seasons. Grass density and production in 2000 suggest that adequate grass production (75 g/m2) was achieved by seeding at 6 to 8 kg pls/ha. Within these grass seeding rates, four or more sagebrush seedlings per m2 were attained when sagebrush was seeded at 2 to 4 kg pls/ha. Use of these seeding rate combinations in mine reclamation can achieve Wyoming big sagebrush standards and reduce reseeding costs.  相似文献   

3.
Vegetation management practices have been applied worldwide to enhance habitats for a variety of wildlife species. Big sagebrush (Artemisia tridentata spp.) communities, iconic to western North America, have been treated to restore herbaceous understories through chemical, mechanical, and prescribed burning practices thought to improve habitat conditions for greater sage‐grouse (Centrocercus urophasianus) and other species. Although the response of structural attributes of sagebrush communities to treatments is well understood, there is a need to identify how treatments influence wildlife population dynamics. We investigated the influence of vegetation treatments occurring in Wyoming, United States, from 1994 to 2012 on annual sage‐grouse population change using yearly male sage‐grouse lek counts. We investigated this response across 1, 3, 5, and 10‐year post‐treatment lags to evaluate how the amount of treated sagebrush communities and time since treatment influenced population change, while accounting for climate, wildfire, and anthropogenic factors. With the exception of chemical treatments exhibiting a positive association with sage‐grouse population change 11 years after implementation, population response to treatments was either neutral or negative for at least 11 years following treatments. Our work supports a growing body of research advocating against treating big sagebrush habitats for sage‐grouse, particularly in Wyoming big sagebrush (A. t. wyomingensis). Loss and fragmentation of sagebrush habitats has been identified as a significant threat for remaining sage‐grouse populations. Because sagebrush may take decades to recover following treatments, we recommend practitioners use caution when designing projects to alter remaining habitats, especially when focused on habitat requirements for one life stage and a single species.  相似文献   

4.
Abstract Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection based on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. The strength of habitat selection between sage-grouse and sagebrush was strongest at a 4-km2 scale. Sage-grouse avoided coniferous habitats at a 0.65-km2 scale and riparian areas at a 4-km2 scale. A roughness index showed that sage-grouse selected gentle topography in winter. After controlling for vegetation and topography, the addition of a variable that quantified the density of CBNG wells within 4 km2 improved model fit by 6.66 Akaike's Information Criterion points (Akaike wt = 0.965). The odds ratio for each additional well in a 4-km2 area (0.877; 95% CI = 0.834- 0.923) indicated that sage-grouse avoid CBNG development in otherwise suitable winter habitat. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km2 area, compared to those that had the maximum density of 12.3 wells per 4 km2 allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R2 = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.  相似文献   

5.
The ability of prescribed fire to enhance habitat features for Greater Sage-Grouse ( Centrocercus urophasianus ) in Wyoming big sagebrush ( Artemisia tridentata wyomingensis ) in western North America is poorly understood. We evaluated recovery of habitat features important to wintering, nesting, and early brood-rearing Sage-Grouse in Wyoming big sagebrush following prescribed fire. Our case study included 1 year of preburn (1989) and 10 years of postburn data collected over 14 years (1990–2003) from control and burned study areas in the Big Desert of southeastern Idaho, U.S.A. We compared recovery and rate of change for 12 features in four categories between burned and control transects and recovery in burned transects including change in variation. Our results indicate that prescribed fire induced quantifiable changes in wintering, nesting, and early brood-rearing Sage-Grouse habitat features 14 years after fire in Wyoming big sagebrush in our study area. Specifically, grass and litter required by Sage-Grouse for nest and brood concealment recovered relatively rapidly following fire; major forb cover was similar between burned and control sites, but the rate of increase for major forb cover and richness was greater in control transects, and structurally mediated habitat features required by Sage-Grouse for food and cover in winter and for nest and brood concealment in spring recovered slowly following fire. Because shrub structural features in our study did not recover in magnitude or variability to preburn levels 14 years after fire, we recommend that managers avoid burning Wyoming big sagebrush to enhance Sage-Grouse habitat, but rather implement carefully planned treatments that maintain Sagebrush.  相似文献   

6.
ABSTRACT Modification of landscapes due to energy development may alter both habitat use and vital rates of sensitive wildlife species. Greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, have experienced rapid, widespread changes to their habitat due to recent coal-bed natural gas (CBNG) development. We analyzed lek-count, habitat, and infrastructure data to assess how CBNG development and other landscape features influenced trends in the numbers of male sage-grouse observed and persistence of leks in the PRB. From 2001 to 2005, the number of males observed on leks in CBNG fields declined more rapidly than leks outside of CBNG. Of leks active in 1997 or later, only 38% of 26 leks in CBNG fields remained active by 2004–2005, compared to 84% of 250 leks outside CBNG fields. By 2005, leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG. Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat within 6.4 km of the lek. After controlling for habitat, we found support for negative effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag between CBNG development and lek disappearance. Current lease stipulations that prohibit development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure lek persistence and may result in impacts to breeding populations over larger areas. Seasonal restrictions on drilling and construction do not address impacts caused by loss of sagebrush and incursion of infrastructure that can affect populations over long periods of time. Regulatory agencies may need to increase spatial restrictions on development, industry may need to rapidly implement more effective mitigation measures, or both, to reduce impacts of CBNG development on sage-grouse populations in the PRB.  相似文献   

7.
Restoration targets for biological soil crusts are largely unknown. We surveyed seven 80‐year‐old grazing exclosures across northern Nevada for biocrusts to quantify reference conditions at relatively undisturbed sites. Exclosures were associated with the following plant communities: Wyoming big sagebrush, black sagebrush, and areas co‐dominated by winterfat and Wyoming big sagebrush. Cover of biocrusts and shrubs were generally higher than other plant groups at these sites, regardless of being inside or outside of the exclosures, suggesting these groups make up most of the native flora across the region. Important in forming soil structure, cyanobacteria of the order Oscillatoriales were less abundant and diverse in black sagebrush communities. Grazing had a negative effect on the abundance of Oscillatoriales but not the number of algal taxa, including cyanobacteria. Abundance of light algal crusts were not influenced by plant community or grazing. Dark algal crusts were generally less abundant on grazed sites. Influences of plant community and grazing were most apparent when accounting for reproductive rates of lichens and mosses based on establishment mechanisms. Abundance of shrubs, perennial grasses, Oscillatoriales, fast reproducing biocrusts and the number of algal and cyanobacterial taxa, varied by plant community, suggesting that restoration should be plant community specific. We demonstrate the affinity of rapidly reproducing biocrusts for winterfat‐Wyoming big sagebrush co‐dominated plant communities, regardless of grazing pressure. Across sites, the effects of grazing were most evident on the abundance of Oscillatoriales and slowly reproducing biocrusts following 80 years of cessation from grazing.  相似文献   

8.
Abstract: We evaluated 6 years of vegetation response following prescribed fire in Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) steppe on vegetation cover, productivity, and nutritional quality of forbs preferred by greater sage-grouse (Centrocercus urophasianus), and abundance of common arthropod orders. Habitat cover (shrubs and tall herbaceous cover [>18 cm ht]) was about 50% lower after burning compared to unburned controls because of the loss of sagebrush. Perennial grasses and an invasive annual forb, pale alyssum (Alyssum alyssoides), increased in cover or yield after fire. There were no increases in yield or nutritional quality of forb species important in diets of sage-grouse. Abundance of ants (Hymenoptera), a significant component in the diet of young sage-grouse, decreased after fire. These results suggest that prescribed fire will not improve habitat characteristics for sage-grouse in Wyoming big sagebrush steppe where the community consists of shrubs, native grasses, and native forbs.  相似文献   

9.
ABSTRACT Conversion of native winter range into producing gas fields can affect the habitat selection and distribution patterns of mule deer (Odocoileus hemionus). Understanding how levels of human activity influence mule deer is necessary to evaluate mitigation measures and reduce indirect habitat loss to mule deer on winter ranges with natural gas development. We examined how 3 types of well pads with varying levels of vehicle traffic influenced mule deer habitat selection in western Wyoming during the winters of 2005–2006 and 2006–2007. Well pad types included producing wells without a liquids gathering system (LGS), producing wells with a LGS, and well pads with active directional drilling. We used 36,699 Global Positioning System locations collected from a sample (n = 31) of adult (>1.5-yr-old) female mule deer to model probability of use as a function of traffic level and other habitat covariates. We treated each deer as the experimental unit and developed a population-level resource selection function for each winter by averaging coefficients among models for individual deer. Model coefficients and predictive maps for both winters suggested that mule deer avoided all types of well pads and selected areas further from well pads with high levels of traffic. Accordingly, impacts to mule deer could probably be reduced through technology and planning that minimizes the number of well pads and amount of human activity associated with them. Our results suggested that indirect habitat loss may be reduced by approximately 38–63% when condensate and produced water are collected in LGS pipelines rather than stored at well pads and removed via tanker trucks. The LGS seemed to reduce long-term (i.e., production phase) indirect habitat loss to wintering mule deer, whereas drilling in crucial winter range created a short-term (i.e., drilling phase) increase in deer disturbance and indirect habitat loss. Recognizing how mule deer respond to different types of well pads and traffic regimes may improve the ability of agencies and industry to estimate cumulative effects and quantify indirect habitat losses associated with different development scenarios.  相似文献   

10.
Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land‐use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population‐level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement‐based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.  相似文献   

11.
Oil and natural gas development in the Intermountain West region of North America has expanded over the last 2 decades, primarily within sagebrush dominated landscapes. Although the effects of energy development on high-profile game species such as the greater sage-grouse (Centrocercus urophasianus) have been documented, studies examining responses of non-game birds are lacking. Simultaneously, many songbirds that breed within sagebrush steppe habitats have shown range-wide population declines that are likely due to widespread habitat loss and alteration. We evaluated songbird abundance and species richness across gradients of oil and natural gas development intensity, as indexed by well density, at 3 energy fields (2 natural gas and 1 oil) in the Upper Green River Basin, Wyoming, USA during 2008–2009. While simultaneously accounting for important habitat attributes, increased well density was associated with significant decreases in Brewer's sparrow (Spizella breweri) and sage sparrow (Amphispiza belli) abundance, particularly in the Jonah natural gas field. Vesper sparrows (Pooecetes gramineus) were also negatively influenced by increased well density. Horned larks (Eremophila alpestris) increased with well density in the Pinedale Anticline natural gas field, and sage thrashers (Oreoscoptes montanus) showed no response to energy development. Species richness was not significantly affected by well density. Results suggest that regional declines of some songbird species, especially sagebrush-obligates, may be exacerbated by increased energy development. Understanding the specific mechanisms underlying responses to energy development is an important next step and will aid land managers in the development of effective mitigation and management strategies for the maintenance of stable bird communities in sagebrush habitat. © 2011 The Wildlife Society.  相似文献   

12.
Vegetation treatments have been widely implemented in efforts to enhance conditions for wildlife populations. Yet the effectiveness of such efforts often lack rigorous evaluations to determine whether these practices are effective for targeted species. This is particularly important when manipulating wildlife habitats in ecosystems that are faced with multiple stressors. The sagebrush (Artemisia spp.) ecosystem has been altered extensively over the last century leading to declines of many associated species. Wyoming big sagebrush (A. tridentata wyomingensis) is the most widely distributed subspecies, providing important habitats for sagebrush-obligate and associated wildlife. Sagebrush often has been treated with chemicals, mechanical treatments, and prescribed burning to increase herbaceous forage species released from competition with sagebrush overstory. Despite many studies documenting negative effects of sagebrush control on greater sage-grouse (Centrocercus urophasianus) habitat, treatments are still proposed as a means of improving habitat for sage-grouse and other sagebrush-dependent species. Furthermore, most studies have focused on vegetation response and none have rigorously evaluated the direct influence of these treatments on sage-grouse. We initiated a 9-year (2011–2019) experimental study in central Wyoming, USA, to better understand how greater sage-grouse respond to sagebrush reduction treatments in Wyoming big sagebrush communities. We evaluated the influence of 2 common sagebrush treatments on greater sage-grouse demography and resource selection. We implemented mowing and tebuthiuron application in winter and spring 2014 and evaluated the pre- (2011–2013) and post-treatment (2014–2019) responses of sage-grouse relative to these management actions. We evaluated responses to treatments using demographic and behavioral data collected from 620 radio-marked female greater sage-grouse. Our specific objectives were to evaluate how treatments influenced 1) sage-grouse reproductive success and female survival; 2) sage-grouse nesting, brood-rearing, and female resource selection; 3) vegetation responses; and 4) forbs and invertebrates. Our results generally suggested neutral demographic responses and slight avoidance by greater sage-grouse in response to Wyoming big sagebrush treated by mowing and tebuthiuron. Neither mowing nor tebuthiuron treatments influenced nest survival, brood survival, or female survival. Selection for nest and brood-rearing sites did not differ before and after treatments. Females selected habitats near treatments before and after they were implemented; however, the strength of selection was lower after treatments compared with pre-treatment periods, which may be explained by a lack of response in vegetation and invertebrates following treatments. Perennial grass cover and height varied temporally yet did not vary systematically between treatment and control plots. Forb cover and species richness varied annually but not in relation to either treatment type. Perennial grass cover and height, forb cover, and forb species richness did not increase within mowed or tebuthiuron-treated areas that received 2 or 6 years of grazing rest compared with areas that received no grazing rest. Finally, forb and invertebrate dry mass did not differ between treated plots and control plots at mowing or tebuthiuron sites in any years following treatments. Results from our study add to a large body of evidence that sage-grouse using Wyoming big sagebrush vegetation communities do not respond positively to sagebrush manipulation treatments. Management practices that focus on the maintenance of large, undisturbed tracts of sagebrush will best facilitate the persistence of sage-grouse populations and other species reliant on the sagebrush steppe.  相似文献   

13.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   

14.
Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.  相似文献   

15.
Species of conservation concern are increasingly threatened by multiple, anthropogenic stressors which are outside their evolutionary experience. Greater sage-grouse are highly susceptible to the impacts of two such stressors: oil and gas (energy) development and West Nile virus (WNv). However, the combined effects of these stressors and their potential interactions have not been quantified. We used lek (breeding ground) counts across a landscape encompassing extensive local and regional variation in the intensity of energy development to quantify the effects of energy development on lek counts, in years with widespread WNv outbreaks and in years without widespread outbreaks. We then predicted the effects of well density and WNv outbreak years on sage-grouse in northeast Wyoming. Absent an outbreak year, drilling an undeveloped landscape to a high permitting level (3.1 wells/km2) resulted in a 61% reduction in the total number of males counted in northeast Wyoming (total count). This was similar in magnitude to the 55% total count reduction that resulted from an outbreak year alone. However, energy-associated reductions in the total count resulted from a decrease in the mean count at active leks, whereas outbreak-associated reductions resulted from a near doubling of the lek inactivity rate (proportion of leks with a last count = 0). Lek inactivity quadrupled when 3.1 wells/km2 was combined with an outbreak year, compared to no energy development and no outbreak. Conservation measures should maintain sagebrush landscapes large and intact enough so that leks are not chronically reduced in size due to energy development, and therefore vulnerable to becoming inactive due to additional stressors.  相似文献   

16.
Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society’s demand for energy.  相似文献   

17.
Shrub Densities on Pre-1985 Reclaimed Mine Lands in Wyoming   总被引:3,自引:0,他引:3  
The reestablishment of native shrubs is part of the mandate under which mining companies extract mineral resources in Wyoming and other western states. Post-mining shrub density and species mixtures have been topics debated by various mine reclamation stake holders. By law, coal-mined lands in Wyoming must now meet a post-mining shrub density of 1 shrub/m2 on 20% of the affected area. To better understand the long-term results of shrub reclamation methods, we measured shrub density by species in 14 pre-1985 seedings at eight mines in three geographic regions of Wyoming. The sites studied were selected as Atriplex canescens (Pursh) Nutt. (fourwing saltbush) and grass or as Artemisia tridentata Nutt. ssp. wyomingensis (Beetle and Young) (Wyoming big sagebrush), fourwing saltbush, and grass post-mining communities. Shrub density and composition varied by site but typically reflected the seed mixtures used. Seedings that used a diversity of shrub species generally had greater 1994 shrub densities. Seeding rates between 60 and 1000 shrub seeds/m2 had a positive, linear relationship with shrub density up to 0.6 shrubs/m2 when sagebrush was part of the shrub seed mixture. We conclude that the likelihood of meeting the shrub standard can be enhanced by seeding diverse shrub mixtures at high seeding rates.  相似文献   

18.
Reclamation is an application of treatment(s) following disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in reestablishing late‐successional plant communities. Reestablishment of plant communities is especially important and challenging in drylands such as shrub steppe ecosystems where succession proceeds slowly. These ecosystems face threats from climate change, invasive species, altered fire regimes, and land‐use change, as well as fossil‐fuel extraction and associated disturbance. As such, the need for effective reclamation after this type of energy development is great. However, past research regarding this type of reclamation has focused on mining rather than oil and gas development. To better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, U.S.A., and quantified the extent of recovery for forbs, grasses, and shrubs on reclaimed and unreclaimed wellpads relative to undisturbed plant communities. Reclamation increased the recovery rate for early‐successional types, including combined forbs and grasses and perennial grasses, but did not affect recovery rate of late‐successional types, particularly big sagebrush and perennial forbs. Rather, subsequent analyses showed that recovery of late‐successional types was affected by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help reestablish late‐successional plant communities more quickly than they would reestablish naturally.  相似文献   

19.
North American sagebrush (Artemisia spp.)-obligate birds are experiencing steep population declines due in part to increased disturbance, mainly human-caused, across their range. At the eastern edge of the sagebrush steppe, this issue may potentially be exacerbated because of natural disturbance by black-tailed prairie dogs (Cynomys ludovicianus). Our goal was to compare local and landscape models of habitat use by greater sage-grouse (Centrocercus urophasianus), Brewer's sparrow (Spizella breweri), and sage thrasher (Oreoscoptes montanus) with models including effects of natural (i.e., prairie dog) and anthropogenic disturbance. We used a combination of field data collection, and state and national datasets for the Thunder Basin National Grassland, eastern Wyoming, USA, to understand the factors that influence lek attendance by sage-grouse and habitat use by 2 passerines in this system. For all 3 species, models including big sagebrush (Artemisia tridentata) cover at local and landscape scales were the most competitive among univariate models, supporting the paradigm that sagebrush is key for these species. Models including anthropogenic disturbance (well density, road density) explained more variation than models of prairie dog disturbance alone for 2 of the 3 species, but long-term disturbance by prairie dogs did reduce abundance of Brewer's sparrows. Although long-term prairie dog disturbance has the potential to reduce sagebrush cover for sagebrush-obligate birds, such events are likely rare because outbreaks of plague (Yersina pestis) and lethal control on borders with private land reduce prairie dog disturbance. Conversely, anthropogenic disturbance is slated to increase in this system, suggesting potentially accelerated declines for sagebrush birds into the future. © 2020 The Wildlife Society.  相似文献   

20.
Ecosystems - Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号