首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

2.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

3.
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment.  相似文献   

4.
草地植物种群繁殖对策研究   总被引:10,自引:2,他引:8  
植物的繁殖包括有性繁殖和无性繁殖两大类型,克隆繁殖是一种较为特殊的营养繁殖方式。本文综述了草地种子植物的生殖分配及生殖投资,克隆生长以及放牧对草地植物种群繁殖的影响。植物种群生物量、能量和养分生殖分配是植物种群生殖分配的重要内容,不同植物在结实期营养元素及能量的配置上有着显著的区别,这可能是植物在长期进化过程中形成的生殖对策,是适应环境的结果。在种群水平上,中等强度以上的放牧干扰有利于植物的克隆生长,但有性生殖减弱。草原植物发达的营养繁殖或克隆生长方式是对放牧的适应性对策。  相似文献   

5.
P. X. Kover 《Oecologia》2000,123(1):48-56
It has been proposed that host castration is a parasite strategy to reallocate host resources from reproductive to vegetative functions to increase parasite fitness. Since resource partitioning between reproduction and vegetative growth can affect host life-history traits, parasite effects on resource allocation can affect both plant fitness and host-parasite coevolution. Field and greenhouse experiments were used to investigate the effects of host castration by the fungus Atkinsonella hypoxylon on the resource allocation and architecture of the grass Danthonia spicata. The results indicate that non-infected D. spicata can reallocate resources from reproduction to vegetative growth when resource allocation to reproduction is prevented. However, I found no evidence that fungal castration causes reallocation of resources from host reproduction to vegetative growth. Instead, infection reduces host biomass and the fungus directly utilizes resources that would have been used for host reproduction for its own reproduction. Received: 25 March 1999 / Accepted: 24 October 1999  相似文献   

6.
The present work describes radiation-induced effects on vegetative, reproductive traits and psoralen content in Psoralea corylifolia L. The effects of gamma radiation on Psoralea seeds were investigated by exposing seeds with doses of 2.5, 5, 10, 15 and 20 kGy at dose rate of 1.65 kGyh−1 and studying the plant growth at three developmental stages: preflowering, flowering and post flowering (seed to seed) after irradiation. Irradiation with lower doses of gamma rays significantly improved vegetative traits while higher doses proved depressing for same parameters. Similar trend was followed in reproductive traits. Psoralen, showed highest concentration in seeds (7.56%) at 20 kGy and lowest in control roots (0.23%). Increment in psoralen was striking for higher gamma doses applied. These long-term changes in plant development may be attributed to alteration in plant genome induced by irradiation. The results show in depth development stimulation and enhancement of secondary metabolite in Psoralea corylifolia L. following low and high dose treatment respectively depicting the potential of gamma rays in plant biotechnology and metabolomics.  相似文献   

7.
克隆植物相连片段(或分株)常常生长在不同的土壤养分斑块中。克隆整合使得生长在异质养分斑块中的克隆片段(或分株)产生局部和非局部反应,从而影响相连片段(或分株)的表型可塑性。为了揭示养分斑块对比度对活血丹(Glechoma longituba)克隆整合的影响,在一控制实验中,将活血丹克隆片断种植于4种不同对比度的环境中,即:无对比度(对照)、低对比度、中对比度和高对比度。活血丹在气体交换、水势、荧光、形态、生长与分配方面的克隆整合强度随养分斑块对比度的增强而表现出增强或减弱的变化趋势;养分斑块对比度越强,活血丹气体交换和荧光暗反应的整合强度越小,叶片水势整合强度越大。斑块对比度可改变部分性状的克隆整合方向;超过一定的对比阈值,整合强度随养分对比度的变化趋势会向着相反方向转变。克隆整合对生理特征的修饰幅度小于对生长特征的修饰幅度。这些结果指示:养分斑块对比度可通过修饰克隆整合格局(即强度和方向)而改变克隆植物的表型可塑性。  相似文献   

8.
While sexual regeneration of plants after disturbance is relatively well understood, vegetative regeneration has attracted some attention only recently. Its role along environmental gradients and across biomes is poorly known and standard methods for assessment are not yet established. We review current knowledge about the role of bud banks in vegetative regeneration and the diversity of their modes of functioning. The similarities and differences between bud banks and seed banks are illustrated, focusing on dormancy, dispersability, seasonal dynamics, longevity and storage of carbohydrates. We try to formulate some principles that unify bud bank functioning across habitats and growth forms: (1) the bud banks consist of all buds which may be used for vegetative regeneration, including those formed adventitiously only after injury; (2) vertical distribution of buds reflects avoidance of disturbance; (3) seasonal changes in the bud bank make vegetative regeneration sensitive to timing of disturbance; and (4) ability to form adventitious buds provides a potential for vegetative regeneration from roots, stumps and leaves. Based on these principles, a simple classification of bud banks is presented similar to the classification of seed banks. Bud bank traits are considered in relation to severity, timing and frequency of disturbance. These include vertical distribution and seasonal fluctuations in the number of buds. Methods for quantitative assessment of bud numbers and resprouting capacity are reviewed, and a new approach based on indirect bud counts is proposed. The suggested concept of bud banks may be widely used in studies focusing on plant functional traits in relation to disturbance regimes at the levels of plant individuals, populations and communities. Its further development may incorporate adjustments for areas with non-seasonal climate and refinements for some growth forms, such as epiphytes.  相似文献   

9.
The genetic relationship between vegetative growth at low temperatures and productivity was investigated for strawberries grown in controlled and field environments. Genotypes from 20 biparental crosses were grown in controlled environments with 11°, 14°, and 17 °C days, 11 °C nights, and 11-h daylength to simulate a range of winter growing conditions expected in mediterranean environments. Individual plants were scored for two initial runner traits and eight vegetative growth traits. Significant main effects of temperature and cross were detected for all growth chamber traits, and conservative estimates of the broad sense heritability (h2) for these traits were 0.10–0.28. None of the temperature x cross interaction effects were significant, suggesting that genetic potential for vegetative growth and vigor is expressed similarly at low and optimal growing temperatures. Highly significant genetic correlations were detected between many growth chamber trait pairs, indicating pleiotropic effects for the genes that condition these traits. Complementary field trials were established, and individual plants were scored for traits that describe yield, production pattern, and plant size. Significant negative genetic correlations were detected between traits that describe growth in the chambers and early production in the field trials, but genetic correlations between chamber growth traits and mid-season or total production were significantly positive and occasionally large. Several of the yield and field growth variables were genetically correlated to initial runner plant traits, suggesting that indirect selection using traits scored in the nursery can be used to improve yield and modify production pattern in the field.  相似文献   

10.
Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant's vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one.  相似文献   

11.
The values of many plant traits are often different even within a species as a result of local adaptation. Here, we studied how multiple climate variables influence trait values in Arabidopsis thaliana grown under common conditions. We examined 9 climate variables and 29 traits related to vegetative growth rate in 44 global A. thaliana accessions grown at ambient or elevated CO2 concentration ([CO2]) and applied a multiple regression analysis. We found that genetic variations in the traits related to growth rates were associated with various climate variables. At ambient [CO2], plant size was positively correlated with precipitation in the original habitat. This may be a result of larger biomass investment in roots at the initial stage in plants adapting to a lower precipitation. Stomatal conductance and photosynthetic nitrogen use efficiency were negatively correlated with vapor pressure deficit, probably as a result of the trade-off between photosynthetic water- and nitrogen-use efficiency. These results suggest that precipitation and air humidity influence belowground and aboveground traits, respectively. Elevated [CO2] altered climate dependences in some of the studied traits. The CO2 response of relative growth rate was negatively correlated with altitude, indicating that plants inhabiting a higher altitude have less plasticity to changing [CO2]. These results are useful not only for understanding evolutionary process but also to predict the plant species that are favored under future global change.  相似文献   

12.
Local competitive interactions strongly influence plant community dynamics. To maintain their performance under competition, clonal plants may plastically modify their network architecture to grow in the direction of least interference. The adaptive value of this plastic avoidance response may depend, however, on traits linked with the plant’s structural blueprint and ontogeny. We tested this hypothesis using virtual populations. We used an Individual Based Model to simulate competitive interactions among clones within a plant population. Clonal growth was studied under three competition intensities in plastic and non-plastic individuals. Plasticity buffered the negative impacts of competition at intermediate densities of competitors by promoting clone clumping. Success despite competition was promoted by traits linked with (1) the plant’s structural blueprint (weak apical dominance and sympodial growth) and (2) ontogenetic processes, with an increasing or a decreasing dependence of the elongation process on the branch generation level or length along the competition intensity gradient respectively. The adaptive value of the plastic avoidance response depended on the same traits. This response only modulated their importance for clone success. Our results show that structural blueprint and ontogeny can be primary filters of plasticity and can have strong implications for evolutionary ecology, as they may explain why clonal plants have developed many species-specific plastic avoidance behaviours.  相似文献   

13.
Summary Genetic and environmental relationships between vegetative growth and production traits at different intervals within a single season were investigated using unselected strawberry genotypes from 20 biparental crosses and their parents. Vegetative growth and productivity patterns differed between test locations and larger yields were detected where fall growth was greatest. Positive genetic correlations were detected between fall growth increments and mid-season production traits, but fall growth was uncorrelated or negatively correlated with late-season production. Conversely, growth during the production season was genetically uncorrelated or negatively correlated to early production traits, but was positively correlated to mid and late-season production. Together, these results suggest that the growth pattern required for early vs sustained production may represent conflicting breeding objectives. Also, although vegetative and reproductive functions compete for assimilates in strawberry, sustained productivity appears dependent on adequate vegetative growth throughout the spring and early summer. Significant correlations were detected between fall plant growth and early yield, but these were attributed to environmental rather than genetic sources. Genetic correlations between spring growth and early production traits were significantly negative and large, suggesting that vegetative during this interval may indicate limited fall inflorescence development.  相似文献   

14.
The optimal allocation to sexual and vegetative reproduction as well as the optimal values of other life-history characteristics such as phenology, growth and mating system are likely to depend on the life-cycle of the organism. I tested whether plants of Mimulus guttatus originating from temporarily wet populations where the species has an enforced annual life-cycle have higher allocation to sexual reproduction, lower allocation to vegetative reproduction, more rapid phenology, faster growth, and floral traits associated with a self-fertilizing mating system than plants from permanently wet populations where the species has a perennial life-cycle. I grew a total of 1377 plants originating from three populations with an annual life-cycle and 11 populations with a perennial life-cycle in a greenhouse under permanently and temporarily wet conditions. Plants of M. guttatus in permanently wet conditions had significantly more vegetative reproduction and tended to have a faster growth than plants in the temporarily wet conditions, indicating plasticity in these life-history traits. Plants from populations with an annual life-cycle invested significantly more in sexual reproduction and significantly less in vegetative reproduction than the ones from populations with a perennial life-cycle. Moreover, this study showed that plants originating from populations with an annual life-cycle have a significantly faster development and floral traits associated with autonomous self-fertilization. In conclusion, this study suggests that there has been adaptive evolution of life history traits of M. guttatus in response to natural watering conditions that determine the life span of the species.  相似文献   

15.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

16.
Tree growth and vegetative propagation are complex but important traits under selection in many tree improvement programmes. To understand the genetic control of these traits, we conducted a quantitative trait locus (QTL) study in three full-sib families of Eucalyptus nitens growing at two different sites. One family growing at Ridgley, Tasmania had 300 progeny and two clonally replicated families growing at Mt. Gambier, South Australia had 327 and 210 progeny. Tree growth was measured over several years at both sites and percentages of roots produced by either stem cuttings or tissue culture were assessed in the two Mt. Gambier families. Linkage analysis of growth traits revealed several QTLs for later year traits but few for early year traits, reflecting temporal differences in the heritabilities of these traits. Two growth QTL positions, one on LG8 and another on LG11 were common between the Ridgley and Mt. Gambier families. Four QTLs were observed for each of the two vegetative propagation methods. Two QTLs for vegetative propagation on LG7 and LG11 were validated in the second family at Mt. Gambier. These results suggest that growth and vegetative propagation traits are controlled by several small effect loci. The QTLs identified in this study are useful starting points for identifying candidate genes using the Eucalyptus grandis genome sequence.  相似文献   

17.
The variation of plant functional traits, from the cell to the whole-plant level, is a central question in trait-based ecology with regard to understanding ecological strategies and adaptations that result from environmental drivers. Here, we analyzed whole-plant and leaf traits of the phreatophyte Ziziphus lotus (L.) Lam., a long-lived shrub that dominates one of the few terrestrial groundwater-dependent ecosystems (GDEs) in Mediterranean Basin drylands. We (a) assessed architectural traits and growth patterns, (b) analyzed leaf morpho-functional traits (specific leaf area [SLA] and stomata pore index [SPI]) and physiological traits (gas exchange rates), as well as their variations within individuals, and (c) evaluated temporal variations in modular growth (i.e., sequential iteration of structural units) between growing seasons and in leaf traits within seasons. Z. lotus' growth pattern was based on the repetition of modules composed of shoots (short and long) and branches (flowering and plagiotropic) that promoted a functional differentiation between vegetative and reproductive structures, respectively. We identified morpho-functionally distinct leaves (i.e., heterophylly) borne on different types of branches. Leaves on flowering branches had higher SLA and water use efficiency (WUEi), but lower SPI and transpiration rates than leaves on vegetative ones. We also observed trade-offs in the elongation of vegetative and flowering structures between growing seasons: the shorter the long shoots, the larger the flowering branches. The modular differentiation and heterophylly of Z. lotus might contribute to prioritizing the investment of resources of this phreatophyte, either for growth or reproduction, and could improve the efficiency in uptake and conservation of resources in drylands.  相似文献   

18.
Fusarium verticillioides is an important fungus occupying dual roles in the maize plant. The fungus functions as an endophyte, a fungal/host interaction beneficial to the growth of some plants. At other times, the fungus may function as a mycotoxin producing pathogen. The advantages and/or disadvantages of the endophytic relationship must be established in order to target appropriate sites for controlling diseases and mycotoxins in maize. One possibility could be to ensure seed maize is fungal free prior to planting. Reciprocal inoculations were made with two fungal isolates on seed of two maize genotypes. Yield was measured at harvest by ear and seed characters and vegetative growth at one-month intervals for plant survival, height, weight and stem diameter. Yield and vegetative growth differed among mature plants only once based on seed inoculation status. In 1998, plant weight was reduced and seed weight per ear was increased for the dent maize, GT-MAS: gk, grown from F. verticillioides RRC 374- inoculated seed compared to other seed treatments. Most vegetative characters were reduced at the first collection for Silver Queen plants grown from F. verticillioides-inoculated seed in 1997 and 1999, but not in 1998. However, no significant differences occurred among mature Silver Queen plants during any of the three growing seasons. In conclusion, yield and vegetative growth of mature maize plants grown from F. verticillioides-inoculated seed were equal to or greater than plants grown from non-inoculated seed under south Georgia field conditions during 1997, 1998, and 1999.  相似文献   

19.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号