首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Questions: 1. Are there differences among species in their preference for coniferous vs. deciduous forest? 2. Are tree and shrub species better colonizers of recent forest stands than herbaceous species? 3. Do colonization patterns of plant species groups depend on tree species composition? Location: Three deciduous and one coniferous recent forest areas in Brandenburg, NE Germany. Methods: In 34 and 21 transects in coniferous and deciduous stands, respectively, we studied the occurrence and percentage cover of vascular plants in a total of 150 plots in ancient stands, 315 in recent stands and 55 at the ecotone. Habitat preference, diaspore weight, generative dispersal potential and clonal extension were used to explain mechanisms of local migration. Regression analysis was conducted to test whether migration distance was related to species’ life‐history traits. Results: 25 species were significantly associated with ancient stands and ten species were significantly more frequent in recent stands. Tree and shrub species were good colonizers of recent coniferous and deciduous stands. In the coniferous stands, all herbaceous species showed a strong dispersal limitation during colonization, whereas in the deciduous stands generalist species may have survived in the grasslands which were present prior to afforestation. Conclusions: The fast colonization of recent stands by trees and shrubs can be explained by their effective dispersal via wind and animals. This, and the comparably efficient migration of herbaceous forest specialists into recent coniferous stands, implies that the conversion of coniferous into deciduous stands adjacent to ancient deciduous forests is promising even without planting of trees.  相似文献   

2.
全晗  董必成  刘录  李红丽 《生态学报》2016,36(13):4045-4054
大气氮沉降对湿地外来植物入侵的影响已成为生态学研究的热点之一。选用梭鱼草(Pontederia cordata)、水菖蒲(Acorus calamus)、黄花鸢尾(Iris wilsonii)和粉绿狐尾藻(Myriophyllum aquaticum)模拟湿地植物群落,设置有无香菇草入侵、水生和陆生生境(水位分别为15 cm和0 cm)及有无氮沉降处理(15 g N m~(-2)a(-1)和0)交叉组成的8种处理组合,进行为期70d的温室控制实验,以分析水陆生境及氮沉降对香菇草入侵湿地植物群落的影响。结果表明:(1)水生生境下,香菇草的总生物量、叶生物量、叶片数和节点数与陆生生境相比显著降低;水生生境下氮沉降处理对香菇草各指标无显著影响,陆生生境下氮沉降处理的香菇草叶片数、节点数显著多于无氮沉降处理。(2)实验周期内氮沉降和香菇草入侵没有对群落的多样性指数及群落内4种湿地植物的生物量产生显著影响;水生生境下植物群落的总生物量及梭鱼草和粉绿狐尾藻的生物量与陆生生境相比显著提高。(3)水生生境下香菇草的相对优势度相比陆生生境下显著下降;氮沉降只在陆生生境下显著提高了香菇草的相对优势度。因此,香菇草向水生生境扩散和入侵的能力不强,其入侵在短时间内对湿地植物群落影响较小。研究结果可以为入侵植物生态学研究提供案例借鉴。  相似文献   

3.
Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L.) decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume) was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp.) were 5–6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera) richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests. Seasonal flooding has the potential to substantially reduce the contributions of these organisms to wood decomposition below-ground, however.  相似文献   

4.
The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.  相似文献   

5.
Abstract. 315 isolated semi-natural and natural stands in NW Germany were investigated floristically, 285 stands of ancient woodlands and 30 recent ones. In the study area nearly all semi-natural and natural ancient woodlands are found on mesotrophic or eutrophic sites and can be assigned to the Fagetalia. 54 selected herbaceous and five woody Fagetalia-species have been tested in their association to ancient woodlands. 21 of the 59 selected plant species show a highly significant association to ancient woodlands and seven species show a weak significance. 31 plant species are not significantly correlated with ancient woodland sites, but 25 of them have a low frequency. The result shows that investigations of the historical ecology can help to understand floristic composition of present-day woodlands. Restriction of many woodland species to ancient woodlands, especially rare species, emphasizes the importance of woodlands with a long continuous history for the preservation of endangered species. Irrespective of ecological conditions, the restriction of plant species to ancient woodlands seems to be mainly caused by their low ability to colonize recent woodlands, especially isolated stands. Differences in the association to ancient woodlands between European countries are assumed to be a function of both time and degree of isolation of woodlands, of the dispersal mode of the plant species and of the availability of suitable habitats.  相似文献   

6.
Habitat heterogeneity may affect the structure of animal assemblages even within apparently homogenous landscapes. Gallery forests of the Amazonia‐Cerrado ecotone have a small‐scale patchiness that is induced by river system dynamics. Gallery forests that never flood are located in upper areas of watercourse margins, whereas seasonally flooded gallery forests are located at lower ground along those margins. We tested the prediction that the assemblage structure of small non‐volant mammals of these two types of forests is distinct and arises from the ecological heterogeneity induced by seasonal floods. We found that species composition differed between forest types, with arboreal species dominating in the seasonally flooded forests and a more balanced distribution of arboreal and terrestrial species in unflooded forests. We found no differences in species abundance between habitats, but species richness was higher in unflooded forests. We hypothesize that this difference is due to decreased resource availability for strictly terrestrial species in seasonally flooded forests. Relative biomass of seasonally flooded forests was more than twice that of unflooded forests due to the dominance of large‐bodied didelphid species in that assemblage. Our results suggest that the ecological heterogeneity created by seasonal floods is central to maintaining diverse assemblages in this region. The preservation of both unflooded and flooded gallery forests, which are under high human pressure from deforestation, agricultural conversion, and implementation of dams, may be crucial to preserving small mammal diversity at the landscape scale.  相似文献   

7.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

8.
We compared the vegetation structure between old (>70 year) stands of planted diversified native forests and stands of Eucalyptus tereticornis embedded in a mosaic of Eucalyptus stands. We then tested for differences in the abundance, species richness, species composition, and ecological traits (forest dependence, sensitivity to forest fragmentation, and diet) of the understory bird assemblages inhabiting both kinds of stands. We expected differences in the structure of the bird assemblages because of the different origins and management strategies (contrary to native stands, Eucalyptus stands were selectively logged in the past). Three stands of each habitat (native and Eucalyptus) were sampled with mist nets during 11 months. Eucalyptus stands had a denser understory, whereas native plantations had a more developed vertical structure and a greater density of native trees. The abundance distribution of bird species was more homogeneous in Eucalyptus than in native stands. Eucalyptus had slightly higher species richness (36 species) than native stands (32 species). The composition of species and the occurrence of the diet, forest dependence, and sensitivity to forest fragmentation categories were similar between habitats. Some bird species (e.g. Turdus leucomelas), however, were more abundant in one habitat over the other. Old stands of Eucalyptus and planted native forest can harbor a diverse bird community similar in structure but not exactly equivalent for individual bird species. Planting native diversified forests and keeping set‐aside stands of the exotic tree should be viewed as complementary rather than alternative strategies for maintaining bird diversity within plantations.  相似文献   

9.
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

10.
Li X L  Li N  Yang J  Ye F Z  Chen F J  Chen F Q 《农业工程》2011,31(1):31-39
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

11.
Jenkins  Michael A.  Parker  George R. 《Plant Ecology》2000,151(2):223-237
Between 1993 and 1995 we sampled herbaceous layer vegetation on 84 plots in Platanus/Asarum Wet-Mesic Bottomland forests to determine how these forests have responded to human disturbance. Four different disturbance types were sampled (abandoned agricultural are as, clearcuts, group-selection openings, and single-tree selection openings), and uncut 80–100 year-old reference stands were sampled for comparison. Detrended Correspondence Analysis (DCA), distance analyses (chord distance and normalized Euclidean distance) and similarity analysis (Bray-Curtis similarity coefficient) suggest that agricultural use has shifted herbaceous-layer vegetation composition away from that typical of the reference forests, but that clearcutting, group-selection harvest, and single-tree selection harvest have not greatly shifted herbaceous composition. This shift in vegetation on abandoned agricultural land resulted from a loss of indicator species, such as Cardamine concatenata (Michx.) Sw., Stellaria pubera Michx., and Laportea canadensis (L.) Weddell and an influx of disturbance, exotic, and nonforest species (e.g., Lycopodium complanatum L., Lonicera japonica Thunb. and Senecio aureus L.). However, only two species found in reference stands, Erigenia bulbosa (Michx.) Nutt. and Sphenopholis obtusata (Michx.) Scribn., were missing from clearcuts, group-selection openings, and single-tree selection openings. The species richness values of abandoned agriculture, clearcut, and group-selection plots were generally greater than those of single-tree selection and reference plots. Abandoned agricultural areas had much greater total species richness because of the influx of dry-site, exotic, disturbance, and non-forest species.  相似文献   

12.
Adjacent floodplain and upland tropical forests experience the same temperature and precipitation regimes, but differ substantially in plant species composition and biotic interactions because of extensive flooding. We hypothesize that flooded forests filter fruiting traits linked to seed dispersal by water and fishes, such that selection by water and fish led to (1) trees that synchronize the timing of fruiting with annual floods, and (2) the evolution of fleshy tissues on fruits to improve buoyancy and increase fruit consumption rates by fish. To test this hypothesis, we compared plant communities in seasonally flooded forests and adjacent upland forest in terms of fruiting phenology, the frequency of trees bearing fleshy fruit, and the role of fleshy tissues in buoyancy and seed viability. Beta‐diversity in this system is high, with significant differences in species composition across habitats. As predicted, the production of ripe fleshy fruits was significantly greater in flooded than upland forests during the flood season. Furthermore, we found that trees with fleshy fruit were significantly more abundant in flooded forests even though species richness of fleshy fruit‐bearing trees was proportionally similar in flooded and upland forests. Additionally, fleshy pulp increased buoyancy. Likewise, time afloat decreased for denser fruit and those with high seed to pulp ratios. In concert, these results suggest that fleshy fruits in Neotropical floodplain forests facilitated hydrochory and ichthyochory. Once established, water and fish became important agents of selection on fruiting traits.  相似文献   

13.
Aims Both human and non‐human determinants have shaped Mediterranean forest structure over the last few millennia. The effects of recent human activities on forest composition, however, remain poorly understood. We quantified changes in forest composition during the past century in the mixed forests of Quercus suber (cork oak) and Q. canariensis (Algerian oak), and explored the effects of forest management and environmental (climate, topography) factors on forest structure at various spatial and temporal scales. Location Mountains north of the Strait of Gibraltar (southern Spain). Methods First, we quantified 20th‐century changes in species composition from a series of inventories in nine mixed forests (c. 40,000 ha), and examined them in terms of the management practices and environmental conditions. Second, we analysed present‐day Q. suber and Q. canariensis stand structure along environmental gradients at two spatial scales: (1) that of the forest landscape (c. 284 ha), combining local inventories and topographic variables and using a digital elevation model; and (2) regional (c. 87,600 km2), combining data from the Spanish Forest Inventory for the Andalusia region and estimates of climatic variables. Results Historical data indicate anthropogenic changes in stand composition, revealing a sharp increase in the density of cork oaks over the last century. Forest management has favoured this species (for cork production) at the expense of Q. canariensis. The impact of management is imprinted on the present‐day forest structure. The abundance of both species increases with annual mean precipitation, and they coexist above 800 mm (the minimum threshold for Q. canariensis). Quercus suber dominates in most of the stands, and species segregation in the landscape is associated with the drainage network, Q. canariensis being clearly associated with moister habitats near streams. Main conclusions Our study quantitatively exemplifies a recent human‐mediated shift in forest composition. As a result of forest management, the realized niche of the cork oak has been enlarged at the expense of that of Q. canariensis, providing further evidence for humans as major drivers of oak forest composition across the Mediterranean. Recent regeneration problems detected in Q. suber stands, a reduced demand for wood products, conservation policies, and climate change augur new large‐scale shifts in forest composition.  相似文献   

14.
Questions: 1. How do physiography, flooding regime, landscape pattern, land‐cover history, and local soil conditions influence the presence, community structure and abundance of overstorey trees? 2. Can broad‐scale factors explain variation in the floodplain forest community, or are locally measured soil conditions necessary? Location: Floodplain of the lower 370 km of the Wisconsin River, Wisconsin, USA. Methods: Floodplain forest was sampled in 10 m × 20 m plots [n= 405) during summers of 1999 and 2000 in six 12‐ to 15‐km reaches. Results: Species observed most frequently were Fraxinus pennsylvanica, Acer saccharinum and Ulmus americana. Physiography (e.g. geographic province) and indicators of flooding regime (e.g. relative elevation and distance from main channel) were consistently important in predicting occurrence, community composition, and abundance of trees. Correspondence analysis revealed that flood‐tolerant and intolerant species segregated along the primary axis, and late‐successional species segregated from flood‐tolerant species along the secondary axis. Current landscape configuration only influenced species presence or abundance in forests that developed during recent decades. Land‐cover history was important for tree species presence and for the abundance of late‐successional species. Comparison of statistical models developed with and without soils data suggested that broad‐scale factors such as geographic province generally performed well. Conclusions: Physiography and indicators of flood regime are particularly useful for explaining floodplain forest structure and composition in floodplains with a relatively high proportion of natural cover types.  相似文献   

15.
Flooding results in induction of anaerobic metabolism in many higher plants. As an important component of anaerobic energy production, alcohol dehydrogenase (ADH) activity increases markedly in response to flooding in white clover, Trifolium repens. Significant inter-individual variation in flood-induced ADH activity exists in natural populations of T. repens. The genetic basis of this variation was analyzed by offspring-midparent regression of data from 75 greenhouse reared families; the estimated heritability of flood-induced ADH activity was 0.55 (±0.13). Genetic variation in flood-induced ADH activity has pronounced effects on physiological response and flood tolerance in this species. ADH activity is positively correlated with the rate of ethanol production, indicating that observed in vitro activity differences are manifested in in vivo physiological function. T. repens plants with higher ADH activities during flooding have greater flood tolerance (measured as growth rate when flooded/unflooded growth rate). Variation in ADH activity during flooding accounts for more than 79% of the variance in flood tolerance. On the basis of a limited field survey of populations occupying three sites differing in exposure to flooding conditions, individuals from site C, the most frequently flooded site, expressed significantly higher average ADH activity when flooded than individuals from site A, a site with no history of flooding. Since ADH activity levels are not correlated with electrophoretic mobility variation in T. repens, this work supports previous suggestions that regulatory variation in enzyme activity may play a central role in biochemical adaptations to environmental stress.  相似文献   

16.
三峡水库的运行,改变了其坝下游的水沙情势,使坝下游沙洲生境呈现出明显的水淹强度梯度变化。阐明这一梯度变化下沙洲植被组成、分布和性状结构特征,是理解植被与沙洲稳定关系的基础,更是阐明三峡工程对长江中下游地区生态环境影响的核心内容之一。选取上荆江河段第一个江心洲-太平口心滩作为研究样地,通过植被组成和分布特征的调查,对不同水淹强度下群落物种组成、多样性和功能特征进行了深入分析。结果表明:太平口心滩植被组成以草本植物为主,稀布小型灌木川三蕊柳。调查共记录物种21科33属39种,以禾本科和菊科植物为主要优势种。轻微(20-40 d)和极强水淹强度(100+d)条件下的生境物种组成同其他水淹强度生境具有显著性差异,轻微水淹强度下牛鞭草和节节草为主要优势种,极强水淹强度下虉草为主要优势种。不同水淹强度下物种多样性指数差异显著,功能多样性指数和生物多样性指数趋势基本一致。随着水淹时间的延长,植被更倾向于表现出花果期位于出露期、植株高度更加低矮、须根系、进行营养繁殖的功能性状。江心洲植被的群落结构和功能性状特征都在水淹梯度下呈现出明显的梯度变化特征。这些研究结果表明水淹强度的梯度变化是沙洲植物群落变化的重要驱动因子,为进一步研究沙洲植物群落动态变化以及沙洲植被协同演替机制,明晰大坝影响下的生态环境变化提供重要依据。  相似文献   

17.
Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity.  相似文献   

18.
《Flora》2005,200(4):354-360
Paspalum modestum and P. wrightii are perennial grasses growing in permanent and seasonally flooded areas, respectively. The former produces short rhizomes and floating culms, the latter forms long rhizomes and erect culms. Variations in percentage aerenchymatous space (PAS) in different organs as a response to flooding was analysed using a clone of each species. Eighteen plantlets of each clone were cultivated during 7 months under flooded vs. unflooded conditions. After this period, roots, rhizomes, culms, and leaf sheaths were collected and prepared. PAS was measured using an image analysis device, and data were analysed using ANOVA.Production of aerenchyma took place in both species within the cortical parenchyma of roots, rhizomes and culms, and the mesophyll of leaf sheaths, both in flooded and unflooded plants. Under flooding conditions PAS increased in both species, although the individual response of organs differed: whereas in P. modestum PAS increased primarily in substratum-fixed roots, in P. wrightii all organs produced additional aerenchyma uniformly. Contrasting responses are understood as adaptations to permanent and seasonal flooding, respectively.  相似文献   

19.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

20.
Riparian forest communities dominated by Populus balsamifera ssp. trichocarpa L. (Torr. and Gray ex Hook.) Brayshaw are important contributors to biodiversity in terrestrial and aquatic ecosystems of the Western United States. Species composition along a successional gradient from stand initiation to late-succession of P. balsamifera-dominated riparian forests was investigated along 145 km of the Willamette River, Oregon. There were 151 total species encountered across 28 stands and a mean species richness of 33.3 species per stand. Young stands were dominated by P. balsamifera and Salix tree spp. and opportunistic herbaceous species. Understory trees, shrubs, and herbaceous species as well as late-successional tree species established 12–15 years after stand initiation. Fraxinus latifolia Benth. was the dominant late-successional tree species. Vertical structural diversity, P. balsamifera mean diameter at breast height, large tree biomass, and stand age were strongly correlated with understory species presence and abundance based on non-metric multidimensional scaling (NMS) ordination. There were no young stands on mid and high terraces and this was reflected in geomorphic position being strongly correlated with the stand age gradient. Abundance of Phalaris arundinacea L. an invasive grass species, was also significantly correlated with plant species composition and abundance. This study indicates that Willamette River riparian forests are diverse and therefore important to the biodiversity of the Willamette River valley and that their presence as a mosaic of communities of different successional stages may be threatened by human interventions, including influences exerted by introduced plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号