首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection.  相似文献   

2.
Sexual selection has been invoked as a major force in the evolution of secondary sexual traits, including sexually dimorphic colourations. For example, previous studies have shown that display complexity and elaborate ornamentation in lizards are associated with variables that reflect the intensity of intrasexual selection. However, these studies have relied on techniques of colour analysis based on human – rather than lizard – visual perception. Here, we use reflectance spectrophotometry and visual modelling to quantify sexual dichromatism considering the overall colour patterns of lacertids, a lizard clade in which visual signalling has traditionally been underrated. These objective methods of colour analysis reveal a large, previously unreported, degree of sexual dichromatism in lacertids. Using a comparative phylogenetic approach, we further demonstrate that sexual dichromatism is positively associated with body size dimorphism (an index of intrasexual selection), suggesting that conspicuous coloration in male lacertids has evolved to improve opponent assessment under conditions of intense male–male competition. Our findings provide the first evidence for the covariation of sexual dichromatism and sexual size dimorphism in lacertids and suggest that the prevalent role of intrasexual selection in the evolution of ornamental coloration is not restricted to the iguanian lineage, but rather may be a general trend common to many diurnal lizards.  相似文献   

3.
Both sexual selection and natural selection can influence the form of dimorphism in secondary sexual traits. Here, we used a comparative approach to examine the relative roles of sexual selection and natural selection in the evolution of sexually dimorphic coloration (dichromatism) and ornamentation in agamid lizards. Sexual dimorphism in head and body size were used as indirect indicators of sexual selection, and habitat type (openness) as an index of natural selection. We examined separately the dichromatism of body regions "exposed to" and "concealed from" visual predators, because these body regions are likely to be subject to different selection pressures. Dichromatism of "exposed" body regions was significantly associated with habitat type: males were typically more conspicuously coloured than females in closed habitats. By contrast, dichromatism of "concealed" body regions and ornament dimorphism were positively associated with sexual size dimorphism (SSD). When we examined male and female ornamentation separately, however, both were positively associated with habitat openness in addition to snout-vent length and head SSD. These results suggest that natural selection constrains the evolution of elaborate ornamentation in both sexes as well as sexual dichromatism of body regions exposed to visual predators. By contrast, dichromatism of "concealed" body regions and degree of ornament dimorphism appear to be driven to a greater degree by sexual selection.  相似文献   

4.
The evolution of sexual dichromatism in tanagers (family Thraupidae) was studied from a phylogenetic perspective using a molecular-based phylogeny. Mapping patterns of sexual dimorphism in plumage onto the phylogeny reveals that changes in female plumage occur more frequently than changes in male plumage. Possible explanations for this pattern include sexual selection acting on female plumage and natural selection for background matching. The results of this study and other recent phylogenetic and comparative studies suggest that factors affecting female plumage are important in shaping patterns of sexual dimorphism.  相似文献   

5.
Sexual dimorphism is thought to result from directional sexual selection acting on male signal traits, with female signal traits given little, if any, attention. Here, we examine male mating preferences in the Australian field cricket, Teleogryllus oceanicus. Using a multivariate selection analysis approach, we found that male preferences have the potential to exert selection on female cuticular hydrocarbons, chemical compounds widely used as sexual signals in insects. In addition to finding both stabilizing and disruptive preference gradients, we also found weak negative directional preference for female cuticular hydrocarbons. We contrast our results with a recent study examining sexual selection via female choice on male T. oceanicus cuticular hydrocarbons and suggest that differences in the form and intensity of sexual selection between the genders may provide part of the net selection differential necessary for the evolution of sexual dimorphism in this species.  相似文献   

6.
Sex differences in behavior, morphology, and physiology are common in animals. In many bird species, differences in the feather colors of the sexes are apparent when judged by human observers and using physical measures of plumage reflectance, cryptic (to human) plumage dichromatism has also been detected in several additional avian lineages. However, it remains to be confirmed in almost all species whether sexual dichromatism is perceivable by individuals of the studied species. This latter step is essential because it allows the evaluation of alternative hypotheses regarding the signaling and communication functions of plumage variation. We applied perceptual modeling of the avian visual system for the first time to an endemic New Zealand bird to provide evidence of subtle but consistent sexual dichromatism in the whitehead, Mohoua albicilla. Molecular sexing techniques were also used in this species to confirm the extent of the sexual size dimorphism in plumage and body mass. Despite the small sample sizes, we now validate previous reports based on human perception that in male whiteheads head and chest feathers are physically brighter than in females. We further suggest that the extent of sexual plumage dichromatism is pronounced and can be perceived by these birds. In contrast, although sexual dimorphism was also detectable in the mass among the DNA‐sexed individuals, it was found to be less extensive than previously thought. Sexual size dimorphism and intraspecifically perceivable plumage dichromatism represent reliable traits that differ between female and male whiteheads. These traits, in turn, may contribute to honest communication displays within the complex social recognition systems of communally breeding whitehead and other group‐breeding taxa. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Why do some bird species show dramatic sexual dichromatism in their plumage? Sexual selection is the most common answer to this question. However, other competing explanations mean it is unwise to assume that all sexual dichromatism has evolved by this mechanism. Even if sexual selection is involved, further work is necessary to determine whether dichromatism results from competition amongst rival males, or by female choice for attractive traits, or both. Here, we test whether sexually dichromatic hihi (Notiomystis cincta) plumage is currently under sexual selection, with detailed behavioural and genetic analyses of a free‐living island population. Bateman gradients measured for males and females reveal the potential for sexual selection, whilst selection gradients, relating reproductive success to specific colourful traits, show that there is stabilizing selection on white ear tuft length in males. By correlating colourful male plumage with different components of reproductive success, we show that properties of yellow plumage are most likely a product of male–male competition, whilst properties of the black and white plumage are an outcome of both male–male competition and female choice. Male plumage therefore potentially signals to multiple receivers (rival males and potential mates), and this may explain the multicoloured appearance of one of the most strikingly dichromatic species in New Zealand.  相似文献   

8.
Wallace proposed in 1868 that natural rather than sexual selection could explain the striking differences in avian plumage dichromatism. Thus, he predicted that nesting habits, through their association with nest predation, could drive changes in sexual dichromatism by enabling females in cavity nesters to become as conspicuous as males, whereas Darwin (1871, The Descent of Man and Selection in Relation to Sex, John Murray, London) argued that sexual selection was the sole explanation for dichromatism. Sexual dichromatism is currently used as indicating the strength of sexual selection, and therefore testing Wallace's claim with modern phylogentically controlled methodologies is of prime interest for comparing the roles of natural and sexual selection in affecting the evolution of avian coloration. Here, we have related information on nest attendance, sexual dichromatism and nesting habits (open and cavity nesting) to male and female plumage conspicuousness in European passerines. Nest incubation attendance does not explain male or female plumage conspicuousness but nest type does. Moreover, although females of monochromatic and cavity nesting species are more conspicuous than females of other species, males of monochromatic and open nesting species are those with more cryptic plumage. Finally, analyses of character evolution suggest that changes in nesting habits influence the probability of changes in both dichromatism and plumage conspicuousness of males but do not significantly affect those in females. These results strongly suggest a role of nesting habits in the evolution of plumage conspicuousness of males, and a role for sexual selection also in females, both factors affecting the evolution of sexual dichromatism. We discuss our findings in relation to the debate that Darwin and Wallace maintained more than one century ago on the importance of natural and sexual selection in driving the evolution of plumage conspicuousness and sexual dichromatism in birds, and conclude that our results partly support the evolutionary scenarios envisaged by both extraordinary scientists.  相似文献   

9.
Sexual dichromatism, a form of sexual dimorphism in which males and females differ in colour, is widespread in animals but has been predominantly studied in birds, fishes and butterflies. Moreover, although there are several proposed evolutionary mechanisms for sexual dichromatism in vertebrates, few studies have examined this phenomenon outside the context of sexual selection. Here, we describe unexpectedly high diversity of sexual dichromatism in frogs and create a comparative framework to guide future analyses of the evolution of these sexual colour differences. We review what is known about evolution of colour dimorphism in frogs, highlight alternative mechanisms that may contribute to the evolution of sexual colour differences, and compare them to mechanisms active in other major groups of vertebrates. In frogs, sexual dichromatism can be dynamic (temporary colour change in males) or ontogenetic (permanent colour change in males or females). The degree and the duration of sexual colour differences vary greatly across lineages, and we do not detect phylogenetic signal in the distribution of this trait, therefore frogs provide an opportunity to investigate the roles of natural and sexual selection across multiple independent derivations of sexual dichromatism.  相似文献   

10.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

11.
Intrasexual competition for reproduction is thought to be an important factor in the evolution of ornaments and weapons in males. However, the evolution of morphologically similar traits in females is often explained through other mechanisms, and the role of intrasexual competition in female trait elaboration has received little attention. Here, we explore the factors associated with female trait elaboration in the cooperatively breeding Pukeko (the New Zealand race of the Purple Swamphen Porphyrio porphyrio melanotus) by comparing sexual dimorphism in an ornament across two populations. Importantly, the two populations considered differ in several social factors that could affect the degree of female–female competition, and could thereby produce differential selection on elaborate female traits. Recent studies have suggested that high reproductive skew (i.e. monopolization of reproduction by dominant individuals) could influence the intensity of intrasexual competition and select for female elaboration. However, we found that sexual dimorphism was diminished and Pukeko females had more elaborate ornaments under conditions of low reproductive skew. We discuss alternative factors that could influence the degree of female–female competition, and show that reproductive skew may not always provide an accurate estimate of the scope for intrasexual competition.  相似文献   

12.
Identifying general patterns of adaptive coloration in animals can help to elucidate the evolutionary processes that generate them. We examined the evolution of colour patterns in Australian agamid lizards, a morphologically and ecologically diverse group that relies primarily on visual communication. We tested whether certain types of colour (yellow–reds and black) were likely to be used as sexual signals, as indicated by their association with indices of sexual selection, namely, sexual dichromatism and sexual dimorphism in body size and head shape. We then tested whether sexually dichromatic colours are associated with specific patterns (uniform, mottled, striped, blotched, reticulated) or ecological variables such as habitat openness, arboreality, and substrate type. The presence of yellow–red on lateral and ventral body regions and black on ventral body regions was significantly more common in males than females. Lateral yellow–red in males was associated with the total extent of sexual dichromatism and size dimorphism, whereas ventral yellow–red was associated with sexual dichromatism. Both lateral and ventral yellow–red were associated with uniform patterning, suggesting that sexual signals in male agamid lizards may often comprise uniform patches or flushes of yellow–red. Although ventral black coloration was more prevalent on males (i.e. strongly sexually dichromatic), it was not associated with indices of sexual selection, suggesting that, in agamid lizards, yellow–red coloration is more likely to be sexually selected than black. Sexually dichromatic coloration was not strongly associated with any of the ecological variables measured. We found some associations, however, between female dorsal patterns and ecological variables, suggesting that female patterns are influenced by natural selection. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 101–112.  相似文献   

13.
Bright coloration in male birds is typically thought to be drivenby sexual selection (female choice or male-male competition).Bird species often vary in the intensity of bright coloration,but few studies have addressed this cross-species variation.Potentially this variation could result from either variationin female preferences or in the relative costs of male traits. Speciesof dabbling ducks vary in the presence of bright male plumageand bill coloration. I tested the transference hypothesis forornament evolution in dabbling ducks using a phylogenetic studyof character evolution. The transference hypothesis makes threepredictions: (1) a costly male ornamental trait is the ancestralcondition, (2) a less costly male ornamental trait is the derivedcondition, and (3) gains in the less costly trait are associatedwith losses or absence of the more costly male trait. All threeof these predictions were satisfied in this study of the evolutionof plumage dimorphism and bright bill coloration in the dabblingducks, given that bright plumage coloration is more costly thanbright bill coloration.  相似文献   

14.
Natural and sexual selection shape the evolution of species but the interplay between them is poorly understood. Two phylogenetic studies on birds have suggested that species with greater sexual dichromatism have a broader habitat use. We show that in agamid lizards, species with more elaborate secondary sexual traits are also ecologically more opportunistic. Species with greater dimorphism in head size and ornamentation have greater altitudinal range and broader habitat use, respectively, and species with greater sexual dichromatism have wider microhabitat use. Body size was positively associated with sexual and ecological generalism, but associations between ecological and sexual traits remained after accounting for body size. We suggest that sexual and natural selection may be linked either because sexual selection can promote generalism at the population level by favouring 'good genes', or because higher population densities may be associated with both stronger sexual selection and broader resource use.  相似文献   

15.
It is not known how environmental pressures and sexual selection interact to influence the evolution of extravagant male traits. Sexual and natural selection are often viewed as antagonistic forces shaping the evolution of visual signals, where conspicuousness is favored by sexual selection and crypsis is favored by natural selection. Although typically investigated independently, the interaction between natural and sexual selection remains poorly understood. Here, we investigate whether sexual dichromatism evolves stochastically, independent from, or in concert with habitat use in darters, a species‐rich lineage of North American freshwater fish. We find the evolution of sexual dichromatism is coupled to habitat use in darter species. Comparative analyses reveal that mid‐water darter lineages exhibit a narrow distribution of dichromatism trait space surrounding a low optimum, suggesting a constraint imposed on the evolution of dichromatism, potentially through predator‐mediated selection. Alternatively, the transition to benthic habitats coincides with greater variability in the levels of dichromatism that surround a higher optimum, likely due to relaxation of the predator‐mediated selection and heterogeneous microhabitat dependent selection regimes. These results suggest a complex interaction of sexual selection with potentially two mechanisms of natural selection, predation and sensory drive, that influence the evolution of diverse male nuptial coloration in darters.  相似文献   

16.
Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex-specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.  相似文献   

17.
Understanding underlying physiological differences between the sexes in circulating androgens and how hormonal variation affects morphology–performance relationships may help clarify the evolution of sexual dimorphism in diverse taxa. Using a widely distributed Australian lizard (Eulamprus quoyii) with weak sexual dimorphism and no dichromatism, we tested whether circulating androgens differed between the sexes and whether they covaried with morphological and performance traits (bite force, sprint speed, endurance). Males had larger head dimensions, stronger bite force, faster sprint speed, and longer endurance compared to females. We found that the sexes did not differ in androgen concentrations and that androgens were weakly associated with both morphological and performance traits. Interestingly, high circulating androgens showed a nonlinear relationship with bite force in males and not females, with this relationship possibly being related to alternative male reproductive tactics. Our results suggest that androgens are not strongly correlated with most performance and morphological traits, although they may play an important organizational role during the development of morphological traits, which could explain the differences in morphology and thus performance between the sexes. Differences in performance between the sexes suggest differential selection on these functional traits between males and females. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 834–849.  相似文献   

18.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

19.
The evolution of conspicuous male display ornaments is a common trend in diverse groups of organisms and a continuing challenge to studies of sexual selection. A phylogenetic approach was used to examine macro-evolutionary patterns of change in sexually dichromatic display coloration (distinctively coloured belly patches) among 130 taxa of phrynosomatid lizards. The results showed repeated losses of sexual dimorphism, which occur through losses of conspicuous male coloration or gains of conspicuous female coloration. The frequent loss of male traits is surprising, given that sexual selection presumably drives their evolutionary origin and maintenance, but is consistent with a recently proposed hypothesis suggesting that females may lose responsiveness to male traits over macro-evolutionary time-scales. The observation of repeated losses of male traits in phrynosomatid lizards (and other groups) may have implications for testing among competing models for the evolution of female preferences. A concentrated changes test showed that changes in male display coloration are significantly associated with the use of ground-dwelling habitat, as opposed to rock- or tree-dwelling habitats. This result suggests a role for natural selection in the loss of male display traits in phrynosomatid lizards, but habitat type alone may be insufficient to explain these losses.  相似文献   

20.
Sexual selection has been identified as a major evolutionary force shaping male life history traits but its impact on female life history evolution is less clear. Here we examine the impact of sexual selection on three key female traits (body size, egg size and clutch size) in Galliform birds. Using comparative independent contrast analyses and directional discrete analyses, based on published data and a new genera-level supertree phylogeny of Galliform birds, we investigated how sexual selection [quantified as sexual size dimorphism (SSD) and social mating system (MS)] affects these three important female traits. We found that female body mass was strongly and positively correlated with egg size but not with clutch size, and that clutch size decreased as egg size increased. We established that SSD was related to MS, and then used SSD as a proxy of the strength of sexual selection. We found both a positive relationship between SSD and female body mass and egg size and that increases in female body mass and egg size tend to occur following increases in SSD in this bird order. This pattern of female body mass increases lagging behind changes in SSD, established using our directional discrete analysis, suggests that female body mass increases as a response to increases in the level of sexual selection and not simply through a strong genetic relationship with male body mass. This suggests that sexual selection is linked to changes in female life history traits in Galliformes and we discuss how this link may shape patterns of life history variation among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号