首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Blood flukes of the genus Schistosoma are platyhelminth parasites that infect 200 million people worldwide. Digestion of nutrients from the host bloodstream is essential for parasite development and reproduction. A network of proteolytic enzymes (proteases) facilitates hydrolysis of host hemoglobin and serum proteins.

Methodology/Principal Findings

We identified a new cathepsin L termed SmCL3 using PCR strategies based on S. mansoni EST sequence data. An ortholog is present in Schistosoma japonicum. SmCL3 was heterologously expressed as an active enzyme in the yeast, Pichia pastoris. Recombinant SmCL3 has a broad pH activity range against peptidyl substrates and is inhibited by Clan CA protease inhibitors. Consistent with a function in degrading host proteins, SmCL3 hydrolyzes serum albumin and hemoglobin, is localized to the adult gastrodermis, and is expressed mainly in those life stages infecting the mammalian host. The predominant form of SmCL3 in the parasite exists as a zymogen, which is unusual for proteases. This zymogen includes an unusually long prodomain with alpha helical secondary structure motifs. The striking specificity of SmCL3 for amino acids with large aromatic side chains (Trp and Tyr) at the P2 substrate position, as determined with positional scanning-synthetic combinatorial library, is consistent with a molecular model that shows a large and deep S2 pocket. A sequence similarity network (SSN) view clusters SmCL3 and other cathepsins L in accordance with previous large-scale phylogenetic analyses that identify six super kingdoms.

Conclusions/Significance

SmCL3 is a gut-associated cathepsin L that may contribute to the network of proteases involved in degrading host blood proteins as nutrients. Furthermore, this enzyme exhibits some unusual sequence and biophysical features that may result in additional functions. The visualization of network inter-relationships among cathepsins L suggests that these enzymes are suitable ‘marker sequences’ for inclusion in future phylogenetic analyses.  相似文献   

2.
Schistosoma mansoni cathepsins L1 (SmCL1) and L2 (SmCL2) were expressed as active recombinant proteinases in Saccharomyces cerevisiae. The recombinant enzymes exhibited substrate preferences characteristic of cathepsin-L-like cysteine proteinases. However, the enzymes differed in their substrate specificities; SmCL1 cleaved Boc-Val-Leu-Lys-NHMec with a higher efficiency than it cleaved Z-Phe-Arg-NHMec, whereas the opposite was true for SmCL2. The enzymes also differed in their pH profiles of activity; SmCL1 exhibited a broad pH profile with an optimum of pH 6. 5, while SmCL2 was active only in the acidic pH range with an optimum of 5.35. Immunoblot and RT-PCR analyses revealed that the native forms of both SmCL1 and SmCL2 are expressed in male and female worms, but at higher levels in adult female compared to male schistosomes. Additionally, both enzymes were observed in the excretory/secretory products of adult worms. The RT-PCR analysis indicated that neither enzyme is expressed in S. mansoni eggs or in miracidia, suggesting that the cathepsin-L-like activity that has been previously reported to be expressed in these stages may be the product of another gene(s). Cercariae do not express SmCL2, but appear to express SmCL1 in its inactive precursor form. Together with the findings of previous immunolocalization and phylogenetic analyses, the results reported here demonstrate that SmCL1 and SmCL2 are distinct cathepsin cysteine proteinases and strongly suggest that they play discrete biological roles.  相似文献   

3.
Isao Hori 《Hydrobiologia》1986,132(1):217-222
The earliest detectable change during regeneration of the gastrodermis in Dugesia japonica was an aggregation of regenerative cells underneath the gastrodermis remaining at the wound margin. The gastrodermal cells in experimental regenerates retained some of their original characters and presented no indication of cell dedifferentiation. The regenerative cells came into contact with the basal surface of gastrodermal cells, forming stratified cell layers. Differentiation of these cells into gastrodermal cells was initiated by the development of synthetic organelles within their cytoplasm. These differentiating cells gave rise to two different types of gastrodermal cells, namely phagocytic cells and sphere cells. In later stages, there was an apparent movement of differentiated gastrodermal cells towards the parenchyma.  相似文献   

4.
Neoblasts in Platyhelminthes are the only cells to proliferate and differentiate into all cell types. In Macrostomum lignano, the incorporation of 5'-bromo-2'-deoxyuridine (BrdU) in neoblasts confirmed the distribution of S-phase cells in two lateral bands. BrdU labeling for light and for transmission electron microscopy (TEM) identified three populations of proliferating cells: somatic neoblasts located between the epidermis and gastrodermis (mesodermal neoblasts), neoblasts located within the gastrodermis (gastrodermal neoblasts), and gonadal S-phase cells. In adults, three stages of mesodermal neoblasts (2, 2-3, and 3) defined by their ultrastructure were found. Stage 1 neoblasts where only seen in hatchlings. These stages either were phases within the S-phase of one neoblast pool or were subsequent stages of differentiating neoblasts, each with its own cell cycle. Regular TEM and immunogold labeling provided the basis for calculating the total number of neoblasts and the ratio of labeled to non-labeled neoblasts. Somatic neoblasts represented 6.5% of the total number of cells. Of these, 27% were labeled in S-phase. Of this fraction, 33% were in stage 2, 46% in stage 2-3, and 21% in stage 3. Immunogold labeling substantiated results concerning the differentiation of neoblasts into somatic cells. Non-labeled stage 2 neoblasts were present, even after a 2-week BrdU exposure. Double labeling of mitoses and FMRF-amide revealed a close spatial relationship of mesodermal neoblasts with the nervous system. Immunogold-labeled sections showed that nearly 70% of S-phase cells were in direct contact or within 5 microm from nerve cords.  相似文献   

5.
Adult Schistosoma mansoni blood flukes express two discrete cysteine proteinases, SmCL1 and SmCL2, both of which are related to the cathepsin L-like enzymes of the C1 family of peptidases. Our previous phylogenetic analysis indicated that SmCL1 is more closely related to cruzipain from the parasitic protozoa Trypanosoma cruzi than to human cathepsin L, whereas the converse situation applies with SmCL2. To characterize their catalytic subsites and substrate specificities, we have now developed three-dimensional (3D) homology models of SmCL1 and SmCL2 using the structure of cruzipain and cathepsin L. Eisenberg analysis of the 3D models revealed self-compatibility scores of 90.1 and 96.1 out of a possible score of 97.6 for SmCL1 and SmCL2, respectively, verifying the accuracy and utility of the models. Substrate preferences of recombinant SmCL1 and SmCL2 at positions P3, P2, and P1 conformed to the substrate specificity predicted by the models. In particular, SmCL1 and SmCL2 both exhibited high affinity (k(cat)/K(m)) for substrates with hydrophobic residues at P2 including Z-Leu-Arg-NHMec (773.4 and 548.5 mM(-1) s(-1), respectively), Boc-Val-Leu-Lys-NHMec (116.8 and 306.5 mM(-1) s(-1)), and Z-Phe-Arg-NHMec (38.9 and 113.4 mM(-1) s(-1)). SmCL1 exhibited only a low affinity for the cathepsin B diagnostic substrate Z-Arg-Arg-NHMec while SmCL2 failed to cleave this substrate. The substrate specificities of SmCL1 and SmCL2 were clearly differentiated with H-Leu-Val-Tyr-NHMec and Suc-Leu-Tyr-NHMec since SmCL1 cleaved both efficiently (k(cat)/K(m) values of 51.9 and 41.1 mM(-1) s(-1), respectively), whereas SmCL2 cleaved neither. The 3D models revealed that this difference in specificity was due to restrictions imposed on the S3 subsite of SmCL2 as a result of insertion of two amino acids vicinal to residue 60.  相似文献   

6.
Results from previous biochemical and cytochemical studies show that a pepstatin-sensitive hemoglobinase is present in the gastrodermis of adult Schistosoma japonicum. To determine whether there is structural similarity to mammalian cathepsin D in addition to inhibition similarity, an immunocytochemical study was initiated using heterologous antiserum to bovine cathepsin D. With light microscopy, immunostaining was observed in the cecal lumen, the gastrodermis, and on the dorsal tegument and tubercles of male worms. With transmission electron microscopy, immunostaining was observed in gastrodermal autophagosomes and tegumental invaginations of the dorsal tegument of males. Immunostaining was also observed within the tubercles, but the reaction product did not appear to be associated with any definite structure or organelle. Heavy endogenous peroxidase activity in the cecal lumen due to ingested hemoglobin obscured with immunostaining. Assuming that all immunostaining is due to molecules that function in a manner similar to that of cathepsin D, it is suggested that such molecules may regulate some aspect of the host-parasite relationship and/or the parasite's metabolism. Alternatively, the immunostained molecules may be structural proteins with epitopes similar to those of mammalian cathepsin D. Reactions associated with the cecum, however, on the basis of previous studies, are believed to derive from molecules that are proteolytic enzymes.  相似文献   

7.
Schistosomiasis is a major endemic disease known for excessive mortality and morbidity in developing countries. Because praziquantel is the only drug available for its treatment, the risk of drug resistance emphasizes the need to discover new drugs for this disease. Cathepsin SmCL1 is the critical target for drug design due to its essential role in the digestion of host proteins for growth and development of Schistosoma mansoni. Inhibiting the function of SmCL1 could control the wide spread of infections caused by S. mansoni in humans. With this objective, a homology modeling approach was used to obtain theoretical three-dimensional (3D) structure of SmCL1. In order to find the potential inhibitors of SmCL1, a plethora of in silico techniques were employed to screen non-peptide inhibitors against SmCL1 via structure-based drug discovery protocol. Receiver operating characteristic (ROC) curve analysis and molecular dynamics (MD) simulation were performed on the results of docked protein-ligand complexes to identify top ranking molecules against the modelled 3D structure of SmCL1. MD simulation results suggest the phytochemical Simalikalactone-D as a potential lead against SmCL1, whose pharmacophore model may be useful for future screening of potential drug molecules. To conclude, this is the first report to discuss the virtual screening of non-peptide inhibitors against SmCL1 of S. mansoni, with significant therapeutic potential. Results presented herein provide a valuable contribution to identify the significant leads and further derivatize them to suitable drug candidates for antischistosomal therapy.  相似文献   

8.
The effects of Astiban, Lucanthone, Hycanthone and Niridazole on autophagic activities in the gastrodermis of Schistosoma mansoni were determined in vivo, using different dosage levels and dosage times. With Astiban, high levels of autophagy were observed in the gastrodermis 2 hours after an injection of the drug into the mouse, and this response had declined by 20 hours, marking a recovery by the parasite from the drug. Hycanthone and Lucanthone produced an autophagic response several days after the onset of treatment, and no recovery was observed in the morphology of the gastrodermis after the drug was discontinued. The effects of Niridazole on the gastrodermis were to produce the most dramatic ultrastructural changes after high doses and over several days of treatment. With all the drugs examined, gastrodermal autophagy was characterized by the formation of vacuoles containing cell components, lipid droplets and sometimes hydrolytic enzyme reaction product. The autophagic vacuoles appeared to be formed by the sequestration of cytoplasmic material by the basal membrane infoldings, and the transfer of enzymes into the vacuole from within the limiting membrane. The residues from intracellular digestion appeared to be emptied into the caecal lumen.  相似文献   

9.
Identification of proteins in 3D maps of cells is a main challenge in structural cell biology. For light microscopy (LM) clonable reagents such as green fluorescent protein represented a real revolution and equivalent reagents for transmission electron microscopy (TEM) have been pursued for a long time. To test the viability of the metal-binding protein metallothionein (MT) as a tag for TEM in cells we have studied three MT-fusion proteins in Escherichia coli: AmiC, a component of the division ring, RecA, a DNA-binding protein, and a truncated cytoplasmic form of maltose-binding protein (MBP). Proteins fused to MT were expressed in E. coli. live cells treated with gold salts were processed by fast-freezing and freeze-substitution. Small electron-dense particles were detected in sections of bacteria expressing the MT-fusion proteins and immunogold labelling confirmed that these particles were associated to the fusion proteins. The distribution of the particles correlated with the functional locations of these proteins: MBP–MT3 concentrated in the cytoplasm, AmiC-MT1 in the bacterial division ring and RecA-MT1 in the nucleoid. The electron-dense tag was easily visualized by electron tomography and in frozen-hydrated cells.  相似文献   

10.
An array of schistosome endoproteases involved in the digestion of host hemoglobin to absorbable peptides has been described, but the exoprotease responsible for catabolising these peptides to amino acids has yet to be identified. By searching the public databases we found that Schistosoma mansoni and Schistosoma japonicum express a gene encoding a member of the M17 family of leucine aminopeptidases (LAPs). A functional recombinant S. mansoni LAP produced in insect cells shared biochemical properties, including pH optimum for activity, substrate specificity and reliance on metal cations for activity, with the major aminopeptidase activity in soluble extracts of adult worms. The pH range in which the enzyme functions and the lack of a signal peptide indicate that the enzyme functions intracellularly. Immunolocalisation studies showed that the S. mansoni LAP is synthesised in the gastrodermal cells surrounding the gut lumen. Accordingly, we propose that peptides generated in the lumen of the schistosome gut are absorbed into the gastrodermal cells and are cleaved by LAP to free amino acids before being distributed to the internal tissues of the parasite. Since LAP was also localised to the surface tegument it may play an additional role in surface membrane re-modelling.  相似文献   

11.
Schistosomes are blood-dwelling flukes that infect 200 million people worldwide and are responsible for hundreds of thousands of deaths annually. Using a signal sequence trap, we cloned from Schistosoma mansoni two cDNAs, Sm-tsp-1 and Sm-tsp-2, encoding the tetraspanin (TSP) integral membrane proteins TSP-1 and TSP-2. We raised antibodies to recombinant TSP fusion proteins and showed that both proteins are exposed on the surface of S. mansoni. Recombinant TSP-2, but not TSP-1, is strongly recognized by IgG1 and IgG3 (but not IgE) from naturally resistant individuals but is not recognized by IgG from chronically infected or unexposed individuals. Vaccination of mice with the recombinant proteins followed by challenge infection with S. mansoni resulted in reductions of 57% and 64% (TSP-2) and 34% and 52% (TSP-1) for mean adult worm burdens and liver egg burdens, respectively, over two independent trials. Fecal egg counts were reduced by 65-69% in both test groups. TSP-2 in particular provided protection in excess of the 40% benchmark set by the World Health Organization for progression of schistosome vaccine antigens into clinical trials. When coupled with its selective recognition by naturally resistant people, TSP-2 seems to be an effective vaccine antigen against S. mansoni.  相似文献   

12.
Clonable contrasting agents for light microscopy, such as green fluorescent protein, have revolutionized biology, but few such agents have been developed for transmission electron microscopy (TEM). As an attempt to develop a novel clonable contrasting agent for TEM, we have evaluated metallothionein, a small metal-binding protein, reacted with aurothiomalate, an anti-arthritic gold compound. Electro spray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry measurements show a distribution of gold atoms bound to individual metallothionein molecules. Unlike previous reports, these data show gold binding occurred as the addition of single atoms without retention of additional ligands. Moreover, under certain conditions, MALDI spectra show gold binding ratios of greater than 1:1 with the cysteine residues of metallothionein. Together, this may hint at a gold-binding mechanism similar to gold nanocluster formation. Finally, metallothionein-gold complexes visualized in the TEM show a range of sizes similar to those used as current TEM labels, and show the potential of the protein as a clonable TEM label in which the gold cluster is grown on the label, thereby circumventing the problems associated with attaching gold clusters.  相似文献   

13.
Corals are diploblastic in body pattern and include two tissue layers, the epidermis and gastrodermis, interconnected by an acellular matrix mesoglea. During development, cells in these tissue layers differentiate morphologically and functionally. In most hermatypic corals, the gastrodermis further develops an ability to associate with microalgae dinoflagellates. This endosymbiosis occurs inside specific host gastrodermal cells, and its mechanism still remains unclear notwithstanding decades of research. The delay in progress is partly due to the difficulty in separating the gastrodermis and its symbionts from the epidermis for detailed cellular and biochemical investigations. The present study reports a simple method to separate these two tissue layers in hermatypic corals using the reducing agent, N-acetylcysteine (NAC). Efficient tissue and proteomic isolations are demonstrated by microscopy and two-dimensional SDS polyacrylamide gel electrophoresis (2D SDS-PAGE). The NAC treatment was able to separate tissue layers without inducing protein degradation. Furthermore, the sensitivity of protein detection greatly increases in the isolated tissue layers. The application of the present technique provides future research on endosymbiosis and coral development with a tool for higher accuracy and sensitivity.  相似文献   

14.
Schistosoma mansoni is a major causative agent of schistosomiasis, which constitutes a severe health problem in developing countries. We have previously described the SmATPDase1 gene, encoding a protein from the external surface of the parasites. In this work, we describe the cloning and characterization of SmATPDase2, a novel CD39-like ATP diphosphohydrolase gene in S. mansoni. In silico analysis of the protein encoded by SmATPDase2 predicts a single N-terminal transmembrane domain similar to that described for secreted human apyrase isoforms. Immuno-colocalization experiments detected both SmATPDase proteins at the S. mansoni adult worm tegument basal and apical membranes, but only SmATPDase2 in the tegument syncytium. SmATPDase2 but not SmATPDase1 protein was detected by Western blot in culture medium supernatants following incubation of adult worms in vitro, indicating that SmATPDase2 was secreted by the parasite to the medium. Taken together these data suggest a non-redundant role for SmATPDase2 in the parasite-host interplay.  相似文献   

15.
The in vitro effects of suramin and trypan blue on schistosomules of Schistosoma mansoni were examined by light and electron microscopy. The drugs were administered to 12-day cultures of schistosomules produced by the penetration method. The larvae were maintained on mouse red blood cells for 5 days prior to addition of the drugs. At the concentrations used, the morphological changes attributable to the drugs were identical for the two drugs. The first signs of anomaly were observable at 8 hr after exposure. At this time, the digestive system showed signs reminiscent of early starvation effects such as alterations of the Golgi and an increase of autophagy. After 36 hr, a rapid disintegration of the gastrodermis became evident. It was hypothesized that the drugs initially inhibit the digestive enzymes and, subsequently, labilize the luminal plasma membrane of the gastrodermis. By 48 hr after exposure, the larvae were dead.  相似文献   

16.
Abstract. The starlet sea anemone, Nematostella vectensis Stephenson 1935, is a burrowing, estuarine species that has become a model organism for fundamental studies of cnidarian and metazoan development. During early oogenesis, oocytes appear in the basal region of the gastrodermis in the reproductive mesenteries and gradually bulge into the adjacent connective tissue space (mesoglea) where the majority of oocyte growth and vitellogenesis occurs. However, oocytes do not physically contact the cellular and amorphous matrix of the mesogleal compartment due to a thin, intervening basal lamina. Oocytes retain limited contact with the basal gastrodermal epithelium via groups of ultrastructurally modified gastrodermal cells called trophocytes. Trophocytes are monociliated accessory cells of somatic origin that collectively form a structure called the trophonema, a unique accessory cell/oocyte association not observed outside the Cnidaria. The trophonema consists of 50–60 trophocytes that maintain contact with <1% of the oocyte surface and forms a circular, bowel‐shaped depression on the luminal surface of the gastrodermis as they sink into the mesoglea with the oocyte. The oocyte remains highly polarized throughout oogenesis with the germinal vesicle positioned near the trophonema and presumably representing the future animal pole of the embryo. Contact between the trophonema and the oocyte is restricted to cell junctions connecting peripheral trophocytes and narrow extensions from the oocyte. Previous studies suggest that the trophonema plays a role in transport of extracellular digestive products from the gastrovascular cavity to the oocyte, and the ultrastructural features described in this study are consistent with that view. Vitellogenesis is described for the first time in a sea anemone. Yolk synthesis involves both autosynthetic and heterosynthetic processes including the biosynthetic activity of the Golgi complex and the uptake of extraoocytic yolk precursors via endocytosis, respectively.  相似文献   

17.

Background

Transmission electron microscopy (TEM) remains an important technique to investigate the size, shape and surface characteristics of particles at the nanometer scale. Resulting micrographs are two dimensional projections of objects and their interpretation can be difficult. Recently, electron tomography (ET) is increasingly used to reveal the morphology of nanomaterials (NM) in 3D. In this study, we examined the feasibility to visualize and measure silica and gold NM in suspension using conventional bright field electron tomography.

Results

The general morphology of gold and silica NM was visualized in 3D by conventional TEM in bright field mode. In orthoslices of the examined NM the surface features of a NM could be seen and measured without interference of higher or lower lying structures inherent to conventional TEM. Segmentation by isosurface rendering allowed visualizing the 3D information of an electron tomographic reconstruction in greater detail than digital slicing. From the 3D reconstructions, the surface area and the volume of the examined NM could be estimated directly and the volume-specific surface area (VSSA) was calculated. The mean VSSA of all examined NM was significantly larger than the threshold of 60 m2/cm3. The high correlation between the measured values of area and volume gold nanoparticles with a known spherical morphology and the areas and volumes calculated from the equivalent circle diameter (ECD) of projected nanoparticles (NP) indicates that the values measured from electron tomographic reconstructions are valid for these gold particles.

Conclusion

The characterization and definition of the examined gold and silica NM can benefit from application of conventional bright field electron tomography: the NM can be visualized in 3D, while surface features and the VSSA can be measured.  相似文献   

18.
Summary The normal morphology of the hypostome and mouth of hydra were examined by transmission electron microscopy with conventional thin sections and freeze-fracture replicas. Myonemes of the hypostome are small in diameter, have gap and intermediate-type cell junctions within each epithelial layer and are associated with the opposite epithelial layer by transmesogleal processes and gap junctions. Nematocysts and sensory cells are aggregated in the circumoral region. The fine structure of adherent flagella arising from gastrodermal gland cells, and the transition region at the mouth between epidermis and gastrodermis are described in detail for the first time. The possible functional significance of the findings is discussed.  相似文献   

19.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

20.
Summary The gastrodermis and mesoglea of the basal disk of Hydra were investigated to conclude a three-part series of papers. The gastrodermis is composed of digestive cells (most predominant cell type), mucous and nerve cells (both immature and fully differentiated). The principal function of the digestive cells appears to be storage of protein, lipid and glycogen reserves which are utilized by neighboring cells. Mucous cells apparently use some of the reserves to synthesize their secretions which lubricate cells and prevent cell damage during egestion of waste through the aboral pore. The function of the gastrodermal nerve cells is uncertain.The mesoglea of the basal disk, contains the same structural components as seen in other regions of the polyp. It is reasonable to assume that it maintains the same function of cell adhesion and migration. As the mesoglea converges on the aboral pore, it loses its structural integrity and cells are sloughed off the column.This investigation was supported by The National Science Foundation, Grant Number GB-27395.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号