首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms, especially the theta and gamma rhythms. In this study, we investigated the coupling relationship of neural activities between thalamus and medial prefrontal cortex (mPFC) by measuring the phase interactions between theta and gamma oscillations in a depression model of rats. The phase synchronization analysis showed that the phase locking at theta rhythm was weakened in depression. Furthermore, theta-gamma phase locking at n:m (1:6) ratio was found between thalamus and mPFC, while it was diminished in depression state. In addition, the analysis of coupling direction based on phase dynamics showed that the unidirectional influence from thalamus to mPFC was diminished in depression state only in theta rhythm, while it was partly recovered after the memantine treatment in a depression model of rats. The results suggest that the effects of depression on cognitive deficits are modulated via profound alterations in phase information transformation of theta rhythm and theta-gamma phase coupling.  相似文献   

3.
4.
The hippocampus plays a key role in declarative learning and memory [1]. Hippocampal long-term potentiation (LTP) is a type of synaptic plasticity that has been widely studied as a syn-aptic mechanism underlying learning and memory[27]. It has been reported that in vitro LTP in area CA1 is subjected to b-adrenergic modulation. For example, the theta-pulse stimulation (510 Hz), a neutral frequency not modifying synaptic strength, can elicit a robust LTP in area CA1 in slice when the b-adr…  相似文献   

5.
Hearts from subjects with different ages have different Ca2+ signaling. Release of Ca2+ from intracellular stores in response to an action potential initiates cardiac contraction. Both depolarization-stimulated and spontaneous Ca2+ releases, Ca2+ transients and Ca2+ sparks, demonstrate the main events of excitation–contraction coupling (ECC). Global increase in free Ca2+ concentration ([Ca2+] i ) consists of summation of Ca2+ release events in cardiomyocytes. Since the Ca2+ flux induced by Ca2+ sparks reports a summation of ryanodine-sensitive Ca2+ release channels (RyR2s)’s behavior in a spark cluster, evaluation of the properties of Ca2+ sparks and Ca2+ transients may provide insight into the role of RyR2s on altered heart function between 3-month-old (young adult) and 6-month-old (mature adult) rats. Basal [Ca2+] i and Ca2+ sparks frequency were significantly higher in mature adult rats compared to those of young adults. Moreover, amplitudes of Ca2+ sparks and Ca2+ transients were significantly smaller in mature adults than those of young adults with longer time courses. A smaller L-type Ca2+ current density and decreased SR Ca2+ load was observed in mature adult rats. In addition, RyR2s were markedly hyperphosphorylated, and phosphorylation levels of PKA and CaMKII were higher in heart from mature adults compared to those of young adults, whereas their SERCA protein levels were similar. Our data demonstrate that hearts from rats with different ages have different Ca2+ signaling including hyperphosphorylation of RyR2s and higher basal [Ca2+] i together with increased oxidized protein-thiols in mature adult rats compared to those of young adults, which play important roles in ECC. Finally, we report that ECC efficiency changes with age during maturation, partially related with an increased cellular oxidation level leading to reduced free protein-thiols in cardiomyocytes.  相似文献   

6.
The aim of this study was to investigate the role of β-adrenergic receptors in modulating associative long-term depression (LTD) at CA1 synapses in rat hippocampal slices. Standard extracellular electrophysiological techniques were employed to record field excitatory post-synaptic potential (fEPSP) activity and to induce associative LTD. Two independent Schaffer collateral pathways were elicited in hippocampal CA1 areas. In one (weak) pathway, the stimulating intensity was adjusted to elicit small fEPSP activity (20–30% of the maximum response). In contrast, 80–90% of the maximum response was evoked in the other (strong) pathway. Associative LTD of weak pathway could be induced by paired stimulation of weak and the strong pathways, repeated 100 times at 0.167 Hz. The associative LTD of weak pathway was NMDA receptor- and phophatase 2B dependent, because bath application of 50 μM D, L-AP5 or 10 μM cypermethrin blocked its induction. Bath application of 1 μM isoproterenol inhibited associative LTD, and this effect was blocked by timolol, suggesting the involvement of β-adrenergic receptors. The inhibitory effect of β-adrenergic receptors on LTD induction was blocked in slices pretreated with inhibitors of protein kinase A and mitogen-activated protein kinase, suggesting that these signal cascades are downstream effectors following activation of β-adrenergic receptors. Nevertheless, bath application of timolol or cypermethrin alone did not have significant effect on associative LTD induction, suggesting neither endogenous function of β-adrenergic receptor nor endogenous PKA activity does have a role in associative LTD induction.  相似文献   

7.
Activation of β-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to β-adrenergic regulation. To address this question, we investigated the effects of the β-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a frequency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that β-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.  相似文献   

8.
9.
Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of?salient sensory stimuli in the BLA are involved in?fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in?vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.  相似文献   

10.
Host–parasitoid metapopulation models have typically been deterministic models formulated with population numbers as a continuous variable. Spatial heterogeneity in local population abundance is a typical (and often essential) feature of these models and means that, even when average population density is high, some patches have small population sizes. In addition, large temporal population fluctuations are characteristic of many of these models, and this also results in periodically small local population sizes. Whenever population abundances are small, demographic stochasticity can become important in several ways. To investigate this problem, we have reformulated a deterministic, host–parasitoid metapopulation as an integer-based model in which encounters between hosts and parasitoids, and the fecundity of individuals are modelled as stochastic processes. This has a number of important consequences: (1) stochastic fluctuations at small population sizes tend to be amplified by the dynamics to cause massive population variability, i.e. the demographic stochasticity has a destabilizing effect; (2) the spatial patterns of local abundance observed in the deterministic counterpart are largely maintained (although the area of ''spatial chaos'' is extended); (3) at small population sizes, dispersal by discrete individuals leads to a smaller fraction of new patches being colonized, so that parasitoids with small dispersal rates have a greater tendency for extinction and higher dispersal rates have a larger competitive advantage; and (4) competing parasitoids that could coexist in the deterministic model due to spatial segregation cannot now coexist for any combination of parameters.  相似文献   

11.
12.
Wetlands, and peatlands in particular, are important sources of methylmercury (MeHg) to susceptible downstream ecosystems and organisms, but very little work has addressed MeHg production and export from peatland-dominated watersheds during the spring snowmelt. Through intensive sampling, hydrograph separation, and mass balance, this study investigated the total mercury (THg) and MeHg fluxes from two upland–peatland watersheds in Minnesota, USA during the 2005 spring snowmelt and proportionally attributed these fluxes to either peatland runoff or upland runoff. Between 26% and 39% of the annual THg flux and 22–23% of the annual MeHg flux occurred during the 12-days snowmelt study period, demonstrating the importance of large hydrological inputs to the annual mercury flux from these watersheds. Upland and peatland runoff were both important sources of THg in watershed export. In contrast to other research, our data show that peatland pore waters were the principal source of MeHg to watershed export during snowmelt. Thus, despite cold and mostly frozen surface conditions during the snowmelt period, peatland pore waters continued to be an important source of MeHg to downstream ecosystems.  相似文献   

13.
The possibility that power-to-power (theta–beta) frequency coupling increases during development was analyzed. Three minutes of spontaneous EEG in an open eyes condition were recorded in a sample of 160 subjects ranging from 6 to 26 years old. Theta (4–7 Hz) and beta band (15–20 Hz) power was calculated in a trial-by-trial basis. Inter-electrode power correlations (IPC) were computed in each subject as the correlation between the power of two frequency bands recorded in two electrodes. An increase in theta–beta IPC with age was obtained. IPCs were higher when theta was seeded in posterior regions than in anterior or central regions. Moreover, the significant correlations between each individual IPC and age were calculated, making it possible to draw IPC versus age correlation maps in order to capture the IPC development topography. An increase was found in significant correlations in the left hemisphere compared to the right hemisphere. There were no differences in the inter-hemispheric versus intra-hemispheric IPC maturation spatial patterns. An increase in power-to-power–frequency coupling in theta–beta occurs during development, suggesting an increase in functional connectivity with age. Frequency coupling between theta and beta rhythms would be one of the mechanisms facilitating integration of long distance functional networks during development.  相似文献   

14.
Differences in induced synchronization of the high-frequency and low-frequency α-rhythm between the group of subjects in whom switching and updating of the cognitive set are not accompanied by errors in recognition of facial expression (the high-plastic set) and the subjects making errors were revealed in healthy adults (n = 35) using the model set to the perception of an angry face. In the former, the well-marked synchronization of the high-frequency α-rhythm occurs in pauses between the trials. This phenomenon is not observed in the latter. Synchronization of both the high-frequency and low-frequency α-rhythm subbands, obviously more pronounced in the subjects who do not make errors in recognizing facial expression, occurs in the middle of an 8-s pause between the set (target) and trigger stimuli. The role of top-down cognitive control, in particular, the top-down inhibitory influences suppressing the action of irrelevant factors in the preparation for processing the target stimulus, and its significance in providing the plastic forms of a cognitive set are discussed.  相似文献   

15.
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+-uptake and Ca2+-ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.  相似文献   

16.
Natural enemy–victim systems may exhibit a range of dynamic space–time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy–victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially segregated from each other when governed by approximate linear dynamics. In contrast, in nonlinear dynamical systems, such as cyclic populations, interacting species achieved local aggregation with each other regardless of dispersal rates, and aggregation was enhanced specifically when highly mobile enemies attacked less mobile victims. These patterns of spatial aggregation held under varying levels of stochastic forcing. This work thus shows a range of dynamic spatial patterns in interacting-species models, and how spatial aggregation between natural enemies and victims can be achieved in locally unstable populations that are linked through dispersal.  相似文献   

17.
Jensen et al. (Learn Memory 3(2–3):243–256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.  相似文献   

18.
19.
MLTK (mixed-lineage kinase-like mitogen-activated protein triple kinase) is a member of the mitogen-activated protein kinase family and functioned as a mitogen activated kinase kinase kinase. MLTKα, one of the alternatively spliced forms of MLTK, could activate the c-Jun N-terminal kinase pathway, which involved in cellular stress responses and apoptosis. But the role of MLTKα in neural apoptosis was still unclear. Here, we performed a transient global cerebral ischemia model (TGCI) in adult rats and detected the dynamic changes of MLTKα in hippocampal CA1 neurons and brain cortex. We found the MLTKα expression was increased shortly after TGCI and peaked after 8 h. In spatial distribution, MLTKα was widely located in neurons rather than astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. Taken together, we hypothesized the up-regulation of MLTKα played an essential role in the apoptosis of hippocampal CA1 neurons.  相似文献   

20.
In late-successional steady state ecosystems, plants and microbes compete for nutrients and nutrient retention efficiency is expected to decline when inputs exceed biotic demand. In carbon (C)-poor environments typical of early primary succession, nitrogen (N) uptake by C-limited microbes may be limited by inputs of detritus and exudates derived from contemporaneous plant production. If plants are N-limited in these environments, then this differential limitation may lead to positive relationships between N inputs and N retention efficiency. Further, the mechanisms of N removal may vary as a function of inputs if plant-derived C promotes denitrification. These hypotheses were tested using field surveys and greenhouse microcosms simulating the colonization of desert stream channel sediments by herbaceous vegetation. In field surveys of wetland (ciénega) and gravelbed habitat, plant biomass was positively correlated with nitrate (NO3 ?) concentration. Manipulation of NO3 ? in flow-through microcosms produced positive relationships among NO3 ? supply, plant production, and tissue N content, and a negative relationship with root:shoot ratio. These results are consistent with N limitation of herbaceous vegetation in Sycamore Creek and suggest that N availability may influence transitions between and resilience of wetland and gravelbed stable states in desert streams. Increased biomass in high N treatments resulted in elevated rates of denitrification and shifts from co-limitation by C and NO3 ? to limitation by NO3 ? alone. Overall NO3 ? retention efficiency and the relative importance of denitrification increased with increasing N inputs. Thus the coupling of plant growth and microbial processes in low C environments alters the relationship between N inputs and exports due to increased N removal under high input regimes that exceed assimilative demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号