首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Changes in phosphometabolites, following osmotic shock, were analyzed by two-dimensional thin layer chromatography, in extracts of the halotolerant alga Dunaliella salina in order to clarify the regulation of glycerol synthesis from starch. The experiments were carried out in wild-type and in osmotically defective mutant cells. It is demonstrated that hyperosmotic shock induces a decrease in fructose 6-phosphate and an increase in fructose-1,6-bisphosphate indicating the activation of phosphofructokinase. Two mutants, which are specifically defective in their response to hyperosmotic shock, accumulate glucose 6-phosphate or phosphogluconate following shock, and have remarkably reduced activities of glucose-6-phosphate dehydrogenase and of phosphogluconate dehydrogenase, respectively. These results indicate that the pentose-phosphate oxidative pathway has a major role in glycerol synthesis. Hyperosmotic shock leads to a transient accumulation of phosphorylcholine and to a decrease of inositolbisphosphate in D. salina extracts. Accumulation of phosphorylcholine is not detected in osmotically defective mutants. Hypoosmotic shock induces an increase in inositolbisphosphate but not in phosphorylcholine. These results are consistent with previous indications for differential activations of phospholipases by hyper or hypoosmotic shock in Dunaliella. Based on these results we suggest that (a) phosphofructokinase is an important checkpoint enzyme in the regulation of glycerol production, and (b) that the pentose-phosphate pathway has a major role in keeping oxidation-reduction balance during glycerol synthesis. The possible role of lipid breakdown products as second messengers in regulating glycerol production in Dunaliella is discussed.  相似文献   

2.
The dependence of the catalytic properties of lactate dehydrogenase (LDH, EC 1.1.1.27) from a halophilic alga Dunaliella salina, a glycophilic alga Chlamydomonas reinhardtii, and from porcine muscle on glycerol concentration, medium pH, and temperature was investigated. Several chemical properties of the enzyme from D. salina differentiated it from the LDH preparation obtained from C. reinhardtii and any homologous enzymes of plant, animal, and bacterial origin. (1) V max of pyruvate reduction manifested low sensitivity to the major intracellular osmolyte, glycerol. (2) The affinity of LDH for its coenzyme NADH dropped in the physiological pH region of 6–8. Above pH 8, NADH virtually did not bind to LDH, while the enzyme affinity for pyruvate did not change considerably. (3) The enzyme thermostability was extremely low: LDH was completely inactivated at room temperature within 30 min. The optimum temperature for pyruvate reduction (32°C) was considerably lower than with the enzyme preparations from C. reinhardtii (52°C) and porcine muscle (61°C). (4) NADH greatly stabilized LDH: the ratio of LDH inactivation constants in the absence of the coenzyme and after NADH addition at the optimum temperature in the preparation from D. salina exceeded the corresponding indices of LDH preparations from C. reinhardtii twelve times and from porcine muscle eight times. The authors believe that these LDH properties match the specific metabolism of D. salina which is set at rapid glycerol synthesis under hyperosmotic stress conditions. The increase of cytoplasmic pH value produced in D. salina by the hyperosmotic shock can switch off the terminal reaction of the glycolytic pathway and thus provide for the most efficient utilization of NADH in the cycle of glycerol synthesis. As LDH is destabilized in the absence of NADH, this reaction is also switched off. In the course of alga adaptation to the hyperosmotic shock, glycerol accumulation and the neutralization of intracellular pH stabilize LDH, thus creating the conditions for restoring the complete glycolytic cycle.  相似文献   

3.
Abstract. The glycerol and starch metabolism of synchronized Dunaliella parva cells as a function of the salinity of the medium has been investigated.
The higher the salinity of the medium the higher is the rate of glycerol synthesis and the endogenous glycerol concentration, whereas starch content and salinity of the medium are inversely related. Upon transfer to a hyperosmotic NaCl-medium cells respond by an immediate increase in glycerol synthesis and an inhibition of starch formation in the light. Under corresponding conditions in darkness, starch degradation is stimulated. In both light and darkness hyperosmotic shocks are followed by a rapid increase in the endogenous pool of inorganic phosphate (Pi). It is suggested that in the light the increase in the endogenous phosphate level inhibits the chloroplast ADPG-pyrophosphorylase (E.G.2.7.7.27), and thereby starch synthesis, and promotes starch phosphorolysis. Photosynthetically produced triosephosphates and triosephosphates derived from starch degradation are converted to glycerol. Also, in the dark the increase in the Pi-level stimulates phosphorolytic starch degradation and thereby synthesis of glycerol. Reasons for the salt stress induced increase in the endogenous Pi-level are discussed.  相似文献   

4.
Dunaliella parva, a green halophilic alga, was found to accumulate very large amounts of intracellular glycerol. Through measurements of the intracellular volume the internal concentration of glycerol was calculated and found to be around 2.1 m in cells cultured in 1.5 m NaCl. When the extracellular salt concentration of an algal suspension was increased or decreased, the intracellular glycerol varied accordingly, reaching its new osmotic equilibrium after about 90 minutes. Since no leakage of intracellular glycerol was observed above 0.6 m NaCl, these alterations in glycerol content are interpreted as due to metabolic formation and degradation of intracellular glycerol. The above results indicate the existence of a new type of algal osmoregulation, in which the osmotic balance depends on the synthesis or degradation of intracellular glycerol in response to the external salt concentration.  相似文献   

5.
Dunaliella salina is an extremely halotolerant, unicellular, green alga lacking a rigid cell wall. Osmotic adaptation to high salinities is based on the accumulation of glycerol. To uncover other functions responsible for halotolerance, protein profiles of algae continuously grown in different salinities were compared. A 150 kilodalton protein (p 150) increased in amount with salt concentration. Furthermore, when the cells were subjected to drastic hyperosmotic shocks, p150 started to rise long after completion of the osmotic response but coincident with reinitiation of cell proliferation. Cells with an initially higher level of p150 resumed growth faster than cells with a lower level of the protein. Addition of cycloheximide early after hyperosmotic shock prevented the rise in p150, indicating this rise was due to de novo synthesis of the protein. These observations suggest that p150 is a saltinduced protein required for proliferation of the cells in saline media. p150 was purified to homogeneity and found to be a detergent-soluble glycoprotein. Polyclonal antibodies against p150 recognized a single protein component in D. salina crude extracts. A high Mr cross-reacting protein was also observed in another Dunaliella strain, D. bardawil. Immunoelectron microscopy localized p150 to the cell surface.  相似文献   

6.
The unicellular green alga Dunaliella salina Teod. was frozen according to the following procedure: 3 days cold adaptation at 4°C, addition of 3.5 M glycerol as a cryoprotectant, slow cooling to –40°C, immersion in liquid nitrogen, and rapid thawing. The survival rate was higher when cells were grown, before freezing, in the presence of 2 M NaCl instead of 1 M NaCl (78 and 48% survival, respectively). This difference is probably due to the intracellular amount of glycerol, which increases with external NaCl concentration and, therefore, may enhance cell protection. Although cells grown in 4 M NaCl accumulated a large amount of glycerol in response to osmotic stress, they did not withstand freezing. The use of cryoprotectant was absolutely necessary for the cells to recover from storage at –196°C. Glycerol was used because it is naturally produced by Dunaliella salina and therefore is not toxic. Provided it was added slowly to avoid osmotic shock, 3.5 M glycerol gave better results than 1M glycerol (48 and 18% survival, respectively). Cold adaptation in the dark increased postthaw viability. Cells grown in 1 M or 2 M NaCl had a survival rate of 48 and 78%, respectively, when cold-adapted, against 10 and 42% when not cold-adapted. This adaptation could be due to the synthesis, at low temperature, of specific proteins because two bands (28–29 kDa) appeared when electrophoretically separated proteins from cold-adapted cells and control cells were compared. Also, it could be due to the degradation of starch that occurs in the dark and leads to glycerol accumulation. Our procedure has never been used to cryopreserve microalgae and could enhance reported survival rates.  相似文献   

7.
  1. Comparisons were made of the effects of salt on the exponential growth rates of two unicellular algae,Dunaliella tertiolecta (marine) andDunaliella viridis (halophilic).
  2. The algae contained glycerol in amounts which varied directly with the salt concentration of the growth media. The highest measured glycerol content ofD. tertiolecta was approximately equivalent to 1.4 molal and occurred in algae grown in 1.36 M sodium chloride. The highest glycerol content measured inD. viridis was approximately equivalent to 4.4 molal and occurred in algae grown in 4.25 M sodium chloride. Lower concentrations of free glucose, which varied inversely with extracellular salt concentration, were also detected.
  3. It is inferred that Na+ is effectively excluded from the two algae. There was some evidence of a moderate uptake of K+.
  4. Comparisons were made of erude preparations of the glucose-6-phosphate dehydrogenase and an NADP-specific glycerol dehydrogenase from each species and of the effects of salt and glycerol on the activities of these enzymes. It is concluded that the different salt tolerances of the two algae cannot be explained by generalized differences between their enzyme proteins.
  5. Although intracellular glycerol must necessarily contribute to the osmotic status of the algae, its primary function in influencing their salt relations is considered to be that of a compatible solute, whereby glycerol maintains enzyme activity under conditions of high extracellular salt concentration and hence low (thermodynamic) water activity.
  相似文献   

8.
The unicellular green alga Dunaliella salina Teod, is halophilic and wall-less. The cell acclimates to osmotic stresses by accumulation or degradation of glycerol. To investigate other mechanisms involved in its physiological recovery following hyperosmotic shocks, protein profiles from cells grown in various salinities were compared. A 13-kDa protein (P13) accumulated when cells were subjected to drastic hyperosmotic shock. Front our results with antibiotic-treated cells and purified chloroplasts, we believe that this component results from de novo translation in chloroplasts. The solubility of P13 was strongly promoted by Triton X-100. Its accumulation was correlated with the recovery of photosynthesis.  相似文献   

9.
Weiss M  Bental M  Pick U 《Plant physiology》1991,97(3):1241-1248
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear polyphosphates, formed only after upshocks with NaCl and not with glycerol, indicative of compartmentation of Na+ into the vacuoles. Conversely, downshocks induce a slower transient accumulation of tripolyphosphates, indicating activation of a different hydrolytic process within the vacuoles. Osmotic shocks do not lead to release of atebrin from acidic vacuoles, indicating that they do not induce a major intravacuolar alkalinization. However, osmotic shocks induce transient permeability changes measured by amine-induced atebrin release from vacuoles. Hypoosmotic shocks transiently increase the permeability (up to 20-fold), whereas hyperosmotic shocks induce a rapid drop in permeability. Electron micrographs of osmotically shocked cells also reveal transient changes in the surface and internal organelles of D. salina cells. It is suggested that hyperosmotic and hypoosmotic shocks induce different changes within acidic vacuoles and in the organization and/or composition of the plasma membrane in Dunaliella.  相似文献   

10.

Background

Dunaliella salina is the most important species of the genus for β-carotene production. Several investigations have demonstrated that D. salina produces more than 10% dry weight of pigment and that the species grows in salt saturated lagoons. High plasticity in the green stage and the almost indistinguishable differences in the red phase make identification and differentiation of species and ecotypes very difficult and time consuming.

Results

In this work, we applied our intron-sizing method to compare the 18S rDNA fingerprint between D. salina (CCAP 19/18), D. salina/bardawil (UTEX LB2538) and β-carotene hyperproducing strains of Dunaliella isolated from salt saturated lagoons in Baja, Mexico. All hyperproducer strains reached β-carotene levels of about 10 pg/cell. Optical microscopy did not allow to differentiate between these Dunaliella strains; however, 18S rDNA fingerprinting methodology allowed us to differentiate D. salina from D. salina/bardawil.

Conclusion

In Baja Mexico we found D. salina and D. salina/bardawil species by using intron-sizing-method. The National Center for Biotechnology Information (NCBI) Dunaliella 18S rDNA gene sequences were analyzed with our methodology and extraordinary correlation was found with experimental results.  相似文献   

11.
Absorption spectra of cyanobacteria (Anacystis nidulans, Anabaena variabilis, and Chlorogloeopsis fritschii), red (Cyanidium caldarum and Porphyridium cruentum), green (Dunaliella maritima and Dunaliella salina) and diatom (Thalassiosira weisflogii) alga cell suspensions are presented; the spectra were obtained by using an approach developed earlier to compensate for scattering [1, 2]. In all species, the shapes of the absorption spectra were independent of the cell concentration. For Th. weisflogii and D. maritima, the analysis of selective and nonselective scattering was carried out. The effect of mechanical cell disruption on optical properties (absorption, scattering, and “package” effect) on D. maritima was studied. The character and dynamics of optical changes in D. salina under the influence of sodium chloride were followed.  相似文献   

12.
Zelazny AM  Shaish A  Pick U 《Plant physiology》1995,109(4):1395-1403
The halotolerant alga Dunaliella responds to hyperosmotic stress by synthesis of massive amounts of glycerol. The trigger for this osmotic response is the change in cell volume, but the mechanism that senses volume changes is not known. Preincubation of Dunaliella salina with tridemorph, a specific inhibitor of sterol biosynthesis, inhibits glycerol synthesis and volume recovery. The inhibition is associated with suppression of [14C]bicarbonate incorporation into sterols and is correlated with pronounced depletion of plasma membrane sterols. Incubation of sterol-depleted cells with cholesterol hemisuccinate restores the capacity for volume regulation in response to hyperosmotic stress. Tridemorph as well as lovastatin also inhibit volume changes that are induced by high light in Dunaliella bardawil, a species that responds to high light intensity by synthesis of large amounts of [beta]-carotene. These volume changes result from accumulation of glycerol and are associated with de novo synthesis of sterols. The major plasma membrane sterol in D. salina and the high-light-induced sterol in D. bardawil co-migrate with ergosterol on thin-layer chromatography and on reversed-phase high-performance liquid chromatography. These results suggest that the osmosensory mechanism in Dunaliella resides in the plasma membrane, and that sterols have an important role in sensing osmotic changes.  相似文献   

13.
The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress.  相似文献   

14.
Two subtracted cDNA libraries ofDunaliella salina (Volvocales, Chlorophyceae) under different hyperosmotic shock were constructed using the suppression subtractive hybridization (SSH) method. The mRNA isolated from algae grown without stress was used as a “driver”, and the mRNAs isolated from algae 16 h (short-term treatment) or 7 d (long-term treatment) after salt stress were used as “testers”. The differentially expressed cDNA fragments inD. salina under salt stress were identified by screening these 2 libraries. Two cDNA fragments,D27 andD114, were identified from clones pL27 and pL114 after the long-term treatment. Three cDNA fragments,D21, D39, andD88, were identified from clones pSh21, pSh39, and pSh88 after the short-term treatment. The homology analysis revealed that D27 was highly similar (91%) to the subunit V of PS I reaction center inChlamydomonas reinhardtii. D21 was similar to fructose-1,6-diphosphate aldolase (78.4%). After searching GenBank with the sequences ofD39, D88, andD114, no similar sequences were found. Northern analysis revealed that the expression levels of all 5 cDNAs were increased significantly after salt stress. This means that SSH can be used in cloning differentially expressed cDNAs inD. salina under salt stress. The expression ofD27, D21, andD88 wasde novo induced by salt stress, and the expression ofD114 andD39 was increased from a relatively lower level; this indicates that all 5 cDNAs might exert an influence on the alga under hyperosmotic shock.  相似文献   

15.
In this study, carotenoid and glycerol production in two unicellular green algae (Dunaliella salina and D. viridis) isolated from the Gave-Khooni salt marsh grown in media containing five different salt concentrations (0.17, 1, 2, 3, and 4 M NaCl) were evaluated under sterile conditions. Algae growth decreased as the medium salinity increased. Optimum growth of D. salina and D. viridis were obtained at 2 and 1 M NaCl, respectively. As salinity increased, glycerol and carotenoid production were increased in D. salina, whereas lower values for these products were produced in D. viridis under the same conditions. Furthermore, the cell color of D. salina changed from green to orange-red following accumulation of carotenoid, but the color of D. viridis was not changed. Thereby, it seems that the Iranian D. salina may be suitable for carotenoid production (betacarotene) on a large scale. In addition, since carotenoid compounds enhance the efficiency of photosynthesis and glycerol synthesis, it appears that the pathway for glycerol production and mechanisms of salt tolerance in D. viridis are unique from those of D. salina.  相似文献   

16.
Katz A  Avron M 《Plant physiology》1985,78(4):817-820
A new method to measure intracellular volume in Dunaliella was developed, where lithium ions are used as monitors of the extracellular volume. Li+ is shown to be impenetrable to the intracellular volume, insignificantly absorbed to the algae, and is rapidly and evenly distributed within the extracellular volume. The method is suggested to be free of several limitations and consistent errors present in several previously employed techniques.

Using the new technique it is shown that both Dunaliella salina and Dunaliella bardawil adjust to a constant cellular volume when grown in a medium containing salt concentrations ranging from 0.5 molar to 4 molar NaCl. That volume is 90 femtoliter per cell for D. salina and 600 femtoliter per cell for D. bardawil. Nonosmotic volume accounts for about 10% of the total cell volume.

The intracellular sodium concentration, as determined with the new technique, was under all experimental conditions tested below 100 millimolar. This was true both for cells grown on 0.5 to 4 molar NaCl, and during the osmoregulatory process. It is thus concluded that intracellular NaCl is a minor contributor to the overall intracellular osmotic pressure in Dunaliella.

  相似文献   

17.
杜氏盐藻在适应外界盐浓度变化的过程中,甘油是其主要的渗透调节物质。低渗处理提高藻细胞的呼吸速率60%以上;高渗处理对呼吸无明显影响,但大大刺激光合放氧速率。呼吸链的细胞色素电子传递链抑制剂KCN和交替氧化酶抑制剂SHAM对杜氏藻渗透调节过程中的呼吸.胞内甘油、ATP、淀粉会量的变化有不同的抑制效果。低渗情况下,胞内甘油转化为淀粉,所需能量由正常呼吸链和交替氧化酶途径同时提供;高渗情况下.淀粉则降解为甘油,光下甘油合成的能量主要由光合电子链提供,暗中则由正常呼吸链提供。  相似文献   

18.
The objective of the present study was to characterize intrinsic physiological and biochemical properties of the wall‐less unicellular cholorophyte Dunaliella salina isolated from a hypersaline Sambhar Lake. The strain grew optimally at 0.5 M NaCl and 16:8 h L:D photoperiod along with maintaining low level of intracellular Na+ even at higher salinity, emphasizing special features of its cell membranes. It was observed that the cells experienced stress beyond 2 M NaCl as evidenced by increased intracellular reactive oxygen species and antioxidative enzymes, nevertheless proline and malondialdehyde content declined sharply accompanied by higher neutral lipid accumulation. Salinity exceeding 2 M resulted decrease in photosynthetic quantum yield (Fv/Fm) and enhanced glycerol synthesis accompanied by leakage. Super oxide dismutase seemed to play a pivotal role in antioxidative defense as eight isoforms were expressed differentially while catalase and glutathione peroxidase showing no significant change in their expression at higher salinity. The ability of D. salina to grow in range of salinities by sustaining healthy photosynthetic apparatus along with accumulation of valuable products made this alga an ideal organism that can be exploited as resource for biofuel and commercial products.  相似文献   

19.
渗透胁迫对杜氏盐藻胞内甘油含量及相关酶活性影响   总被引:8,自引:0,他引:8  
杜氏盐藻(Dunaliella salina)是一种抗渗透能力强的单细胞绿藻,甘油在其渗透调节过程中发挥重要作用。本实验对5种不同NaCl浓度条件下,盐藻的生长、细胞内甘油含量及甘油代谢相关酶的活性变化进行了测定。结果表明,NaCl浓度过高或过低均影响盐藻的生长;高渗胁迫条件下甘油含量迅速增加,3-磷酸甘油磷酸酶的活性和二羟丙酮还原酶催化二羟丙酮转化为甘油的活性明显增加;而低渗胁迫条件下的甘油含量会迅速降低,3-磷酸甘油磷酸酶的活性丧失,二羟丙酮还原酶催化甘油转化为二羟丙酮的活性增加。基于此实验结果,我们对盐藻渗透胁迫条件下细胞内的甘油代谢过程与其抗渗透胁迫能力的相关性进行了探讨。  相似文献   

20.
The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号