首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

2.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

3.
This paper introduces an adaptive neuro ?C fuzzy inference system (ANFIS) and artificial neural networks (ANN) models to predict the apparent and complex viscosity values of model system meat emulsions. Constructed models were compared with multiple linear regression (MLR) modeling based on their estimation performance. The root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R 2) statistics were performed to evaluate the accuracy of the models tested. Comparison of the models showed that the ANFIS model performed better than the ANN and MLR models to estimate the apparent and complex viscosity values of the model system meat emulsions. Coefficients of determination (R 2) calculated for estimation performance of ANFIS modeling to predict apparent and complex viscosity of the emulsions were 0.996 and 0.992, respectively. Similar R 2 values (0.991 and 0.985) were obtained when estimating the performance of the ANN model. In the present study, use of the constructed ANFIS models can be suggested to effectively predict the apparent and complex viscosity values of model system meat emulsions.  相似文献   

4.
Leaf area of a plant is essential to understand the interaction between plant growth and environment. This useful variable can be determined by using direct (some expensive instruments) and indirect (prediction models) methods. Leaf area of a plant can be predicted by accurate and simple leaf area models without damaging the plant, thus, provide researchers with many advantages in horticultural experiments. Several leaf-area prediction models have been produced for some plant species in optimum conditions, but not for a plant grown under stress conditions. This study was conducted to develop leaf area estimation models by using linear measurements such as lamina length and width by multiple regression analysis for green pepper grown under different stress conditions. For this purpose, two experiments were conducted in a greenhouse. The first experiment focused to determine leaf area of green pepper grown under six different levels of irrigation water salinity (0.65, 2.0, 3.0, 4.0, 5.0, and 7.0 dS m−1) and the other under four different irrigation regime (amount of applied water was 1.43, 1.0, 0.75, and 0.50 times of required water). In addition to general models for each experiment, prediction models of green pepper for each treatment of irrigation water salinity and of irrigation regime experiments were obtained. Validations of the models for both experiments were realized by using the measurements belong to leaf samples allocated for validation purposes. As a result, the determined equations can simply and readily be used in prediction of leaf area of green pepper grown under salinity and water stress conditions. The use of such models enable researchers to measure leaf area on the same plants during the plant growth period and, at the same time, may reduce variability in experiments.  相似文献   

5.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

6.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

7.
Atriplex nummularia exhibits excellent adaptability to environments with high salinity and low water availability. Accordingly, many studies have been conducted to identify the tolerance of the plant. We cultivated Atriplex in sodic saline soil under conditions of water stress in Northeast Brazil. The purpose of the study was to evaluate the growth characteristics and production of leaves, stems and roots of Atriplex under these conditions in order to identify anatomical changes in vesicular cells in leaf epidermis as well as to assess the osmotic potential of the soil solution and the leaves. The experiment was performed in a greenhouse where Atriplex was cultivated for 134 days in pots with sodic saline soil. The treatments comprised four moisture levels (35%, 55%, 75% and 95% of field capacity – FC). The height, diameter and dry mass of leaf, stem and root exhibited their highest values at levels of soil moisture that were 75% and 95% of FC. The high yields of dry biomass indicate the potential use of this halophyte for restoration of salt-affected soils. The vesicular cells were influenced by the soil moisture. The osmotic potential can serve as a good index for evaluating plant responses to water stress and salinity.  相似文献   

8.
Phragmites australis is the dominant species in the Yellow River Delta and plays an important role in wetland ecosystems. In order to evaluate the relationship between phenotypic variation and environmental factors, explore how functional traits respond to changes in electrical conductivity and soil water content, and reveal the ecological strategies of P. australis, we investigated the ecological responses of P. australis to soil properties based on 96 plots along the coastal–inland regions in the Yellow River Delta of China. Within the range of soil water content (SWC, 9.39%–36.92%) and electrical conductivity (EC, 0.14–13.29 ms/cm), the results showed that (a) the effects of salinity were more important than the soil water content for the characterization of the morphological traits and that plant functional traits including leaf traits and stem traits responded more strongly to soil salinity than soil water content; (b) compared with morphological traits such as average height and internode number, physiological traits such as SPAD value, as well as morphological traits closely related to physiological traits such as specific leaf area and leaf thickness, showed stronger stability in response to soil water and salinity; and (c) under the condition of high electrical conductivity, P. australis improved its water acquisition ability by increasing indicators such as leaf water content and leaf thickness. In addition, with the increase in plant tolerance to stress, more resources were used to resist external stress, and the survival strategy was inclined toward the stress tolerator (S) strategy. Under low EC conditions, P. australis increased specific leaf area and leaf area for its growth in order to obtain resources rapidly, while its survival strategy gradually moved toward the competitor (C) strategy.  相似文献   

9.
Poss  J.A.  Grattan  S.R.  Grieve  C.M.  Shannon  M.C. 《Plant and Soil》1999,206(2):237-245
Symptoms of boron toxicity (i.e., necrosis of leaf tips and margins) have been observed on eucalyptus trees in the San Joaquin Valley of California where the trees are being tested for their effectiveness at reducing the volume of agricultural drainage effluents. In a controlled, outdoor sand-tank study, Eucalyptus camaldulensis Dehn., Clone 4544 trees were grown and irrigated with combinations of salinity and B to determine their influence on tree growth and water use. Irrigation water quality treatments were prepared to simulate the Na-sulfate salinity, high B nature of these drainage effluents. Electrical conductivities (ECiw) of the waters ranged from 2 to 28 dS m-1 and B concentrations ranging from 1 to 30 mg L-1. As an integral component of this study , we developed a method to quantify and correlate foliar damage with leaf B concentrations. By scanning both injured and uninjured leaves into computer files and processing with image analysis, we were able to simultaneously correlate salinity stress with its overall effect on leaf area as well as to quantify the relative fraction of leaf area affected by specific-ion (i.e., B) injury. Leaf area was unaffected by B stress but was reduced by salinity only in the younger leaves. Boron injury was correlated with increasing irrigation water B only in older leaves. The relative injured area (RIA) of the older leaves was related to the B concentrations of leaves from trees grown at various salinities . A regression equation was developed from injury data obtained from trees grown under boron and salinity stress for 223 days (r2=0.90). From this relationship, we were able to estimate leaf boron concentrations from injury symptoms in leaves selected at random from main trunk branches of trees grown for 333 days under the same stress conditions. The results suggest that this method may have potential as an effective tool for monitoring the response to toxic levels of boron in eucalyptus, once B toxicity has been established by analytical means. The RIA appears to be mitigated by increased salinity of the irrigation water and is consistent with the general reduction in leaf B by salinity. The interactive effects of boron and salinity on foliar injury depends on the physiological age of the leaf.  相似文献   

10.
Boron is essential to growth at low concentrations and limits growth and yield when in excess. Little is known regarding plant response to excess boron (B) and salinity occurring simultaneously. The influences of B and salinity on tomatoes (Lycopersicon esculentum Mill. Cv `5656') were investigated in lysimeters. Salinity levels were 1, 3, 6 and 9 dSm–1 and B levels were 0.028, 0.185, 0.37, 0.74, 1.11, 1.48 mol m–3. Excess boron was found to decrease yield and transpiration of tomatoes. This effect was inhibited when plants were exposed to simultaneous B and salinity stresses. Both irrigation water salinity and boron concentration influenced water use of the plants in the same manner as they influenced yield. While yield was found to decrease with increased boron concentration in leaf tissue, increased salinity led to decreased boron accumulation. Yield response was found to correlate better to B concentration in irrigation water and soil solution than to plant tissue B content. A dominant-stress-factor model was assumed and validated. The model applies the principle that when a plant is submitted to conditions of stress caused by B in conjunction with salinity, the more severe stress determines yield. The results of this study have significance in modeling and management of high salinity high boron conditions. Under saline conditions, differences in crop yield and in water use may not be experienced over a significant range of boron concentrations.  相似文献   

11.
基于湿地植物光谱的水体总氮估测   总被引:3,自引:0,他引:3  
利用再生水补充城市湿地是目前湿地恢复与重建的主要方向,然而再水中高浓度的氮、磷含量极易导致水体富营养化。遥感技术已成为富营养化监测的重要手段,但对于植被覆盖水域的富营养化直接探测存在一定的局限性。以北京市典型再生水补水湿地奥林匹克公园南园湿地为研究区,利用湿地植物光谱进行水体富营养化主控因子总氮的遥感探测。测定芦苇(Phragmites australis)和香蒲(Typha angustifolia)的叶片光谱及水体总氮含量,在对数据进行预处理的基础上建立二者的关系模型,包括单变量模型(比值光谱指数(SR)模型和归一化差值光谱指数(ND)模型),与多变量模型(逐步多元线性回归(SMLR)模型和偏最小二乘回归(PLSR)模型),并利用交叉验证决定系数(R2cv)和均方根误差(RMSEcv)进行模型精度检验。结果表明,不同回归模型相比,多变量回归模型精度较高;多变量回归模型中,PLSR模型精度较高,R2cv可达0.72,RMSEcv仅为0.24,是建立湿地植物光谱与水体总氮含量关系的最优模型。不同湿地植物类型相比,利用芦苇反射光谱建立的各种预测模型的精度都高于香蒲。其他环境因子(总磷)也是影响TN含量与湿地植物反射光谱关系的重要因素。研究成果可以弥补现有水体富营养化遥感探测的不足,并为再生水利用的城市湿地水质监测与管理提供有力的科学依据。  相似文献   

12.
干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算   总被引:1,自引:0,他引:1  
张玮  王鑫梅  潘庆梅  谢锦忠  张劲松  孟平 《生态学报》2018,38(18):6677-6684
植物叶片的反射光谱特征与叶绿素含量密切相关。以重要的笋用竹种雷竹(Phyllostachys violascens)为研究对象,采用盆栽及控水试验方法研究了2年生雷竹在干旱胁迫条件下冠层叶片反射光谱的响应特征,分析了叶片叶绿素含量与不同波段光谱反射率一阶微分值以及光谱特征参数之间的相关关系,并以雷竹叶绿素含量敏感波段及构建的植被指数与叶绿素含量进行了拟合。结果表明,重度缺水处理后雷竹叶片叶绿素含量显著降低,在可见光区叶片光谱反射率随叶绿素含量的降低而增加,以波长493、639、693、756 nm等处的光谱反射率一阶微分值与叶绿素含量的相关性较高。雷竹叶片叶绿素含量与光谱特征参数如绿峰反射率、红谷反射率、蓝边面积、绿峰面积之间的相关性较高。与已有的植被指数相比基于雷竹叶绿素含量敏感波段修正后的植被指数与叶绿素含量相关性优于原植被指数。基于反射率一阶微分值构建的多元回归方程以及修正的绿色归一化植被指数(m GNDVI)构建的回归方程拟合效果较好,为雷竹叶绿素含量的较优估算方程。研究结果可以为雷竹叶绿素含量的快速无损测定以及季节性干旱条件下雷竹林的科学经营及灾后评估提供依据。  相似文献   

13.
In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) – PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the response to salinity and drought stress in ginger and it is likely operating in a DRE/CRT independent manner.  相似文献   

14.
In order to investigate the effect of salinity on the growth and photosynthesis of the wild wheat and wheat, three accessions of Aegilops geniculata from Ain Zana, Zaghouan and Sbitla and one variety of durum wheat (Triticum durum) were grown in the INRAT greenhouse and treated with different salinity levels. The growth of leaves, water status and gas exchange parameters have been measured at the reproductive stage. The flag leaf length, total leaf dry weight, water status, CO2 assimilation rate, stomatal conductance, intercellular CO2 and transpiration for the three Ae. geniculata accessions and wheat variety significantly decreased with increasing salt. The decline in photosynthesis measured in response to salt stress was proportionally greater than the declines in transpiration, resulting in a reduction of water-use efficiency, at both the leaf and whole-plant levels. Among the factors inhibiting photosynthetic activity, those of a stomatal nature had a greater effect. This study has shown a high degree of variation of these characters mainly related to geographical origin. It was observed also that Sbitla accession was less affected by the imposed salt stress than all the others while Ain Zana was the most affected one.  相似文献   

15.
This study explores whether male and hermaphrodite plants of Phillyrea angustifolia (Oleaceae) show physiological and structural differences at the leaf level under severe water stress driven by drought and soil salinity. Leaf traits were measured in summer, at the height of the summer drought period, in male and hermaphrodite plants from two adjacent sites under contrasting soil salinity levels. Male plants from the saline site had significantly higher leaf proline content compared to males from the nonsaline site. By contrast, leaf proline levels were similarly low in hermaphrodite plants from both sites. On the other hand, hermaphrodite plants from the saline site had higher leaf stomatal frequency than hermaphrodites from the nonsaline site, whereas this parameter did not differ for male plants across sites. Such differences could be interpreted as the result of two different solutions to the same selective pressure in the androdioecious shrub P. angustifolia.  相似文献   

16.

Background and aims

The photochemical reflectance index (PRI) is correlated to photosynthetic efficiency and has been successfully applied at multiple scales for remote estimation of physiological functioning. However, interpretation of the PRI signal can be confounded by many different variables including declines in photochemical pigments. Our study was aimed at investigating PRI in response to salinity stress, and evaluating physiological and pigment responses of two co-occurring shrubs, Baccharis halimifolia and Myrica cerifera in laboratory studies.

Methods

Photosynthesis, water relations, chlorophyll fluorescence, hyperspectral reflectance and leaf pigment contents were measured following salinity treatment.

Results

Physiological measurements indicated that both species exhibit adaptations which protect PSII during periods of stress. Chlorophyll fluorescence parameters were affected in both species, but indicated that other photochemical reactions (e.g. photorespiration) were important for energy dissipation in absence of chlorophyll changes. After many days of reduced photosynthesis, photochemical changes were detectable using PRI indicating chronic stress.

Conclusions

Variations in PRI were not related to changes in pigments but strongly related to tissue chlorides indicating salinity effects on the PRI signal. Thus, PRI is an indicator of salinity stress in these coastal species and may be as an early signal for increasing salt exposure associated with rising sea-level and climate change.  相似文献   

17.
18.
19.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

20.
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号