首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reliable estimates of feedstock resources are a prerequisite to the establishment of a biomass based-industry for energy and non food products. Field trials in the European Union (EU) show that Miscanthus spp. can produce high yields. Here we use a model (MISCANMOD) coupled with a GIS environment to estimate the contribution that Miscanthus could make to projected national electricity consumption. We describe the integration of different data sets, transformation procedures, and spatial analyses using GIS to produce energy statistics for the EU-25. Overall, Miscanthus grown on the 10% of arable land which is currently in set-aside could generate 282 TWh yr−1 electricity. This would meet 39% of the EU-25 target of 723 TWh yr−1 of electricity from renewable energy sources (RES) by 2010. As RES targets rise, land available for energy crops is also expected to increase. We consider three additional scenarios where Miscanthus could be grown on 10%, 20% and 35% of all agricultural land and we estimate it could generate respectively 345, 691 and 1209 TWh yr−1 of electrical energy. At a national scale France, Poland and Germany have the highest potentials for Miscanthus production based on agricultural land area (respectively 83, 52, 49 TWh yr−1 when 10% agricultural land is used). Finally, we reduced the scale to the EU NUTS2 (Nomenclature of Territorial Units for Statistics) regions to examine regional generation capacities. Key regions have been identified where national RES targets are exceeded. These regions could become net exporters of renewable energy.  相似文献   

2.
Replacement of fossil fuels with sustainably produced biomass crops for energy purposes has the potential to make progress in addressing climate change concerns, nonrenewable resource use, and energy security. The perennial grass Miscanthus is a dedicated energy crop candidate being field tested in Ontario, Canada, and elsewhere. Miscanthus could potentially be grown in areas of the province that differ substantially in terms of agricultural land class, environmental factors and current land use. These differences could significantly affect Miscanthus yields, input requirements, production practices, and the types of crops being displaced by Miscanthus establishment. This study assesses implications on life cycle greenhouse gas (GHG) emissions of these differences through evaluating five Miscanthus production scenarios within the Ontario context. Emissions associated with electricity generation with Miscanthus pellets in a hypothetically retrofitted coal generating station are examined. Indirect land use change impacts are not quantified but are discussed. The net life cycle emissions for Miscanthus production varied greatly among scenarios (?90–170 kg CO2eq per oven dry tonne of Miscanthus bales at the farm gate). In some cases, the carbon stock dynamics of the agricultural system offset the combined emissions of all other life cycle stages (i.e., production, harvest, transport, and processing of biomass). Yield and soil C of the displaced agricultural systems are key parameters affecting emissions. The systems with the highest potential to provide reductions in GHG emissions are those with high yields, or systems established on land with low soil carbon. All scenarios have substantially lower life cycle emissions (?20–190 g CO2eq kWh?1) compared with coal‐generated electricity (1130 g CO2eq kWh?1). Policy development should consider the implication of land class, environmental factors, and current land use on Miscanthus production.  相似文献   

3.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

4.
We estimate the mitigation potential of local use of bioenergy from harvest residues for the 2.3 × 10km2 (232 Mha) of Canada's managed forests from 2017 to 2050 using three models: Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), a harvested wood products (HWP) model that estimates bioenergy emissions, and a model of emission substitution benefits from the use of bioenergy. We compare the use of harvest residues for local heat and electricity production relative to a base case scenario and estimate the climate change mitigation potential at the forest management unit level. Results demonstrate large differences between and within provinces and territories across Canada. We identify regions with increasing benefits to the atmosphere for many decades into the future and regions where no net benefit would occur over the 33‐year study horizon. The cumulative mitigation potential for regions with positive mitigation was predicted to be 429 Tg CO2e in 2050, with 7.1 TgC yr ?1 of harvest residues producing bioenergy that met 3.1% of the heat demand and 2.9% of the electricity demand for 32.1 million people living within these regions. Our results show that regions with positive mitigation produced bioenergy, mainly from combined heat and power facilities, with emissions intensities that ranged from roughly 90 to 500 kg CO2e MWh?1. Roughly 40% of the total captured harvest residue was associated with regions that were predicted to have a negative cumulative mitigation potential in 2050 of ?152 Tg CO2e. We conclude that the capture of harvest residues to produce local bioenergy can reduce GHG emissions in populated regions where bioenergy, mainly from combined heat and power facilities, offsets fossil fuel sources (fuel oil, coal and petcoke, and natural gas).  相似文献   

5.
Large‐scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass‐derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ? but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR.  相似文献   

6.
Growing second‐generation energy crops on marginal land is conceptualized as one of the primary means of future bioenergy development. However, the extent to which marginal land can support energy crop production remains unclear. The Loess Plateau of China, one of the most seriously eroded regions of the world, is particularly rich in marginal land. On the basis of the previous field experiment of planting Miscanthus species in Qingyang of the Gansu Province, herein, we estimated the yield potential of Miscanthus lutarioriparius, the species with the highest biomass, across the Loess Plateau. On the basis of the radiation model previously developed from Miscanthus field trials, annual precipitation was introduced as an additional variable for yield estimate in the semiarid and semihumid regions of the Loess Plateau. Of 62 million hectares (Mha) of the Loess Plateau, our model estimated that 48.7 Mha can potentially support Miscanthus growth, with the average yield of 17.8 t ha?1 yr?1. After excluding high‐quality cropland and pasture and land suitable for afforestation, a total of 33.3 Mha of presumably marginal land were left available for producing the energy crop at the average yield of 16.8 t ha?1 yr?1 and the total annual yield of 0.56 billion tons. The analysis of environmental factors indicated that erosion, aridity, and field steepness were the primary contributors to the poor quality of the marginal land. The change of land uses from traditional agriculture to energy crop production may prevent further erosion and land degradation and consequently establish a sustainable economy for the region.  相似文献   

7.
The Brookings Institute analysis rate both Lexington and Louisville, Kentucky (USA) as two of the nation's largest carbon emitters. This high carbon footprint is largely due to the fact that 95% of electricity is produced from coal. Kentucky has limited options for electric power production from low carbon sources such as solar, wind, geothermal, and hydroelectric. Other states (TN, IN, OH, WV, and IL) in this region are similarly limited in renewable energy capacity. Bioenergy agriculture could account for a proportion of renewable energy needs, but to what extent is unclear. Herein, we found that abandoned agricultural land, not including land that is in fallow or crop rotation, aquatic ecosystems, nor plant-life that had passed through secondary ecological succession totaled 1.9 Mha and abandoned mine-land totaled 0.3 Mha, which combined accounted for 21% of Kentucky's land mass. A life cycle assessment was performed based on local yield and agronomic data for native grass bioenergy agriculture. These data showed that utilizing Kentucky's marginal land to grow native C 4 grasses for cellulosic ethanol and bioelectricity may account for up to 13.3% and 17.2% of the states 2 trillion MJ energy consumption and reduce green house gas emissions by 68% relative to gasoline.  相似文献   

8.
The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land‐use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land‐use change – we simply assess the best option in any given global location should a land‐use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad . Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe‐25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land‐use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land‐use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land‐use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20‐year‐old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions.  相似文献   

9.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

10.
The aim of this study was to evaluate the biomass production potential for the Spanish Iberian Peninsula using the Populus spp. ‘I‐214’ clone under several management regimes and land availability scenarios, and to determine its future contribution to Spanish energy demands. Empirical models were fitted to the data from a network of 144 plots located at 12 sites in the continental Mediterranean climatic regions of the Iberian Peninsula, in which yield was related to climate and soil, as well as to plantation management variables. Four models were developed considering average maximum temperature of the hottest month (TMAXH, °C), length of drought (A, months), intensity of drought (K, unitless) and soil pH. Predictions were made for the irrigated agricultural land (IAL), where the value of the independent variables were within the validity range, and for two management scenarios. Energy production capacity was evaluated by considering the alternatives for transforming poplar SRC biomass: heat, bio‐ethanol and electricity. The results indicated a mean productivity for the Spanish Iberian peninsula of between 15.3 and 10.9 Mg ha?1 yr?1 for the standard management scenario and the poorly irrigated and weeded management scenario respectively. Two IAL scenarios were considered for the calculation of biomass production potential: all IAL for which it was possible to make predictions is made available for poplar SRC (TP, maximum hypothetical production capacity), and another in which only unproductive IAL is available for poplar SRC (RP, production capacity without constricting agricultural production). The TP scenario contributes up to 6.8–9.6% of total energy demands, and the RP scenario 0.7–0.9%, depending on plantation management.  相似文献   

11.
In this article we describe an optimization model, a mixed integer program, to determine the optimal locations and capacity sizes of biomass‐based facilities in energy crop supply chains, and demonstrate its use using data for Great Britain. We show the utility of the model for planning the optimal locations of biomass‐based facilities by investigating the supply of feedstock from Miscanthus for Combined Heat and Power (CHP) in Great Britain, based on data of current electricity demand. Results show that CHP cost directly influences its optimal location, and the price of bioelectricity from Miscanthus. At the coarse spatial resolution of the available energy demand data, the sale price of Miscanthus does not greatly influence the quantity of Miscanthus sold in Great Britain. Only when the hypothetical sale price of Miscanthus was closer to CHP cost, was the quantity of Miscanthus sold influenced by the variation in the sale price of Miscanthus. In future, we will apply the model using electricity and heat demand data at fine spatial scale currently being located, which will allow the implications of local production of Miscanthus for CHP to be explored.  相似文献   

12.
In French West Indies, the high dependency of the electricity mix on imported fossil fuels has led local authorities to propose the conversion of some land to the production of energy cane. This conversion mainly concerns land polluted by the pesticide chlordecone, where most crops for human consumption have been banned. This molecule has a strong affinity for soil organic matter (SOM). The aims of this study were to assess the impact of crop residue management and compost application on the stocks of SOM and chlordecone in soils cultivated with energy cane and to determine the minimum SOM input required to maintain SOM stocks. A field experiment was conducted to determine the yield and biomass partitioning of energy cane, and laboratory incubations were performed to estimate humification from crop residues. Changes in SOM and chlordecone stocks over a 30-year period were investigated using models already calibrated for the land under study. Non-harvestable biomass left on the field (tops, litterfall and roots) covered >60 % of SOM mineralization. A full offset of mineralization required the return of 10 % of harvestable biomass or the application of compost at a rate of 40 Mg ha?1 every 5 years. With the total removal of harvestable biomass and without compost applications, SOM and chlordecone losses increased by 23 and 13 %, respectively, which was associated with high SOM mineralization and chlordecone leaching under tropical climate. The estimated break-even price for cane biomass indicated that compost application would be more profitable for farmers than the return of a part of the harvestable biomass.  相似文献   

13.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

14.
For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant–endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.  相似文献   

15.
Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus ( Miscanthus × giganteus ), short rotation coppice (SRC) poplar ( Populus trichocarpa Torr. & Gray × P. trichocarpa , var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.  相似文献   

16.
A simple approach is suggested to project potential changes in the diversity of vascular plants. We use the current (recent past) relationship between plant diversity and geographic variation in the climate, as well as elevation range, to project changes in regional species richness (at 100 × 100 km resolution), concentrating on six climate scenarios for 2020, 2050 and 2080. The results show an overall trend towards increased vascular plant species richness. Increases in richness by 2050 and 2080 are expected over approximately three-quarters of the land surface, but decreases are expected in other regions. The magnitudes of richness gains and losses both increase over time, as the level of warming grows. The latitudinal pattern of change suggests that richness increases will be greatest at high latitudes, where plant productivity and diversity are largely limited by temperature. Richness decreases are not projected consistently in any latitudinal band, but are most likely to be observed at 5–40ºN, where declines in precipitation drive most projected decreases in richness.  相似文献   

17.

Purpose

Demand-side management is a promising way to increase the integration of renewable energy sources by adapting part of the demand to balance power systems. However, the main challenges of evaluating the environmental performances of such programs are the temporal variation of electricity generation and the distinction between generation and electricity use by including imports and exports in real-time.

Methods

In this paper, we assessed the environmental impacts of electricity use in France by developing consumption factors based on historical hourly data of imports, exports, and electricity generation of France, Germany, Great Britain, Italy, Belgium, and Spain. We applied a life cycle approach with four environmental indicators: climate change, human health, ecosystem quality, and resources. The developed dynamic consumption factors were used to assess the environmental performances of demand-side management programs through optimized changes in consumption patterns defined by the flexibility of 1 kWh every day in 2012–2014.

Results and discussion

Between 2012 and 2014, dynamic consumption factors in France were higher on average than generation factors by 21.8% for the climate change indicator. Moreover, the dynamic consideration of electricity generation of exporting countries is essential to avoid underestimating the impacts of electricity imports and therefore electricity use. The demand response programs showed a range of mitigation up to 38.5% for the climate change indicator. In addition, an environmental optimization cost 1.4 € per kg CO2 eq. for 12% mitigation of emissions as compared to an economic optimization. Finally, embedding the costs of some environmental impacts in the electricity price with a carbon price enhanced the efficiency of economic demand response strategies on the GHG emissions mitigation.

Conclusions

The main scientific contribution of this paper is the development of more accurate dynamic electricity consumption factors. The dynamic consumption factors are relevant in LCAs of industrial processes or operational building phases, especially when consumption varies over time and when the power system participates in a wide market with exports and imports such as in France. In the case of demand-side management programs, dynamic consumption factors could prevent an environmentally damaging energy from being imported, despite the economic interest of system operators. However, the approach used in this study was attributional and did not assess the local grid responses of load shifting programs. Therefore, a more comprehensive model could be created to assess the local short-term dynamic consequences of located prospective consumptions and the global long-term consequences of demand-side management programs.
  相似文献   

18.

Aim

This study examines the impact of changing nitrogen (N) fertilizer application rates, land use and climate on N fertilizer-derived direct nitrous oxide (N2O) emissions in Irish grasslands.

Methods

A set of N fertilizer application rates, land use and climate change scenarios were developed for the baseline year 2000 and then for the years 2020 and 2050. Direct N2O emissions under the different scenarios were estimated using three different types of emission factors and a newly developed Irish grassland N2O emissions empirical model.

Results

There were large differences in the predicted N2O emissions between the methodologies, however, all methods predicted that the overall N2O emissions from Irish grasslands would decrease by 2050 (by 40–60 %) relative to the year 2000. Reduced N fertilizer application rate and land-use changes resulted in decreases of 19–34 % and 11–60 % in N2O emission respectively, while climate change led to an increase of 5–80 % in N2O emission by 2050.

Conclusions

It was observed in the study that a reduction in N fertilizer and a reduction in the land used for agriculture could mitigate emissions of N2O, however, future changes in climate may be responsible for increases in emissions causing the positive feedback of climate on emissions of N2O.   相似文献   

19.
The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia’s total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12–15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31–42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.  相似文献   

20.

Purpose

Concentrating solar power (CSP) plants based on parabolic troughs utilise auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs.

Methods

A complete life cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35 % of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative energy demands (CED) and energy payback times (EPT) were also determined for each scenario.

Results and discussion

Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh and acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilisation of NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar-only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions.

Conclusions

Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilisation. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号