首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply molecular code theory to a rule-based model of the human inner kinetochore and study how complex formation in general can give rise to molecular codes. We analyze 105 reaction networks generated from the rule-based inner kinetochore model in two variants: with and without dissociation of complexes. Interestingly, we found codes only when some but not all complexes are allowed to dissociate. We show that this is due to the fact that in the kinetochore model proteins can only bind at kinetochores by attaching to already attached proteins and cannot form complexes in free solution. Using a generalized linear mixed model we study which centromere protein (CENP) can take which role in a molecular code (sign, meaning, context). By this, associations between CENPs (CenpA, CenpQ, CenpU and CenpI) and code roles are found. We observed that CenpA is a major risk factor (increases probability for code role) while CenpQ is a major protection factor (decreases probability for code role). Finally we show, using an abstract model of copolymer formation, that molecular codes can also be realized solely by the formation of stable complexes, which do not dissociate. For example, with particular dimers as context a molecular code mapping from two different monomers to two particular trimers can be realized just by non-selective complex formation. We conclude that the formation of protein complexes can be utilized by the cell to implement molecular codes. Living cells thus facilitate a subsystem allowing for an enormous flexibility in the realization of mappings, which can be used for specific regulatory processes, e.g. via the context of a mapping.  相似文献   

2.
Recently the terms "codes" and "information" as used in the context of molecular biology have been the subject of much discussion. Here I propose that a variety of structural realism can assist us in rethinking the concepts of DNA codes and information apart from semantic criteria. Using the genetic code as a theoretical backdrop, a necessary distinction is made between codes qua symbolic representations and information qua structure that accords with data. Structural attractors are also shown to be entailed by the mapping relation that any DNA code is a part of (as the domain). In this framework, these attractors are higher-order informational structures that obviate any "DNA-centric" reductionism. In addition to the implications that are discussed, this approach validates the array of coding systems now recognized in molecular biology.  相似文献   

3.
A circular code is a set of trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons, and automatically with a window of few nucleotides. In 1996, a common circular code, called X, was identified in large populations of eukaryotic and prokaryotic genes. Hence, it is believed to be an ancestral structural property of genes. A new computational approach based on comparative genomics is developed to identify essential molecular functions associated with circular codes. It is based on a quantitative and sensitive statistical method (FPTF) to identify three permuted trinucleotide sets in the three frames of genes, a flower automaton algorithm to determine if a trinucleotide set is a circular code or not, and an integrated Gene Ontology and Taxonomy (iGOT) database. By carrying out automatic circular code analyses on a huge number of gene populations where each population is associated with a particular molecular function, it identifies 266 gene populations having circular codes close to X. Surprisingly, their molecular functions include 98% of those covered by the essential genes of the DEG database (Database of Essential Genes). Furthermore, three trinucleotides GTG, AAG and GCG, replacing three trinucleotides of the code X and called “evolutionary” trinucleotides, significantly occur in these 266 gene populations. Finally, a new method developed to analyse and quantify the stability of a set of trinucleotides demonstrates that these evolutionary trinucleotides are associated with a significant increase of the stability of the common circular code X. Indeed, its stability increases from the 1502th rank to the 16th rank after the replacement of the three evolutionary trinucleotides among 9920 possible trinucleotide replacement sets.  相似文献   

4.
The codon-degeneracy model (CDM) predicts that patterns of nucleotide substitution in protein-coding genes are largely determined by the relative frequencies of four-fold (4f), two-fold, and non-degenerate sites, the attributes of which are determined by the structure of the governing genetic code. The CDM thus further predicts that genetic codes with alternative structures will "filter" molecular evolution differentially. A method, therefore, is presented by which the CDM may be applied to the unique structure of any genetic code. The mathematical relationship between the proportion of transitions at 4f degenerate nucleotide sites and the transition-to-transversion ratio is described. Predictions for five individual genetic codes, relative to the relationship between code structure and expected patterns of nucleotide substitution, are clearly defined. To test this "filter" hypothesis of genetic codes, simulated DNA sequence data sets were generated with a variety of input parameter values to estimate the relationship between patterns of nucleotide substitution and best-fit estimates of transition bias at 4f degenerate sites for both the universal genetic code and the vertebrate mitochondrial genetic code. These analyses confirm the prediction of the CDM that, all else being equal, even small differences in the structure of alternative genetic codes may result in significant shifts in the overall pattern of nucleotide substitution.  相似文献   

5.
6.
BACKGROUND: There is a need for integrative and quantitative methods to investigate the structural and functional relations among elements of complex systems, such as the neurovascular unit (NVU), that involve multiple cell types, microvasculatures, and various genomic/proteomic/ionic functional entities. METHODS: Vascular casting and selective labeling enabled simultaneous three-dimensional imaging of the microvasculature, cell nuclei, and cytoplasmic stains. Multidimensional segmentation was achieved by (i) bleed-through removal and attenuation correction; (ii) independent segmentation and morphometry for each corrected channel; and (iii) spatially associative feature computation across channels. The combined measurements enabled cell classification based on nuclear morphometry, cytoplasmic signals, and distance from vascular elements. Specific spatial relations among the NVU elements could be quantified. RESULTS: A software system combining nuclear and vessel segmentation codes and associative features was constructed and validated. Biological variability contributed to misidentified nuclei (9.3%), undersegmentation of nuclei (3.7%), hypersegmentation of nuclei (14%), and missed nuclei (4.7%). Microvessel segmentation errors occurred rarely, mainly due to nonuniform lumen staining. CONCLUSIONS: Associative features across fluorescence channels, in combination with standard features, enable integrative structural and functional analysis of the NVU. By labeling additional structural and functional entities, this method can be scaled up to larger-scale systems biology studies that integrate spatial and molecular information.  相似文献   

7.
The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid–RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.  相似文献   

8.

Background

We consider cells as biological systems that process information by means of molecular codes. Many studies analyze cellular information processing exclusively in syntactic terms (e.g., by measuring Shannon entropy of sets of macromolecules), and abstract completely from semantic aspects that are related to the meaning of molecular information.

Methods

This mini-review focusses on semantic aspects of molecular information, particularly on codes that organize the semantic dimension of molecular information. First, a general conceptual framework for describing molecular information is proposed. Second, some examples of molecular codes are presented. Third, a mathematical approach that makes the identification of molecular codes in reaction networks possible, is developed.

Results

By combining a systematic conceptual framework for describing molecular information and a mathematical approach to identify molecular codes, it is possible to give a formally consistent and empirically adequate model of the code-based semantics of molecular information in cells.

General significance

Research on the semantics of molecular information is of great importance particularly to systems biology since molecular codes embedded in systems of interrelated codes govern main traits of cells. Describing cells as semantic systems may thus trigger new experiments and generate new insights into the fundamental processes of cellular information processing. This article is part of a Special Issue entitled Systems Biology of Microorganisms.  相似文献   

9.
The genetic code is known to have a high level of error robustness and has been shown to be very error robust compared to randomly selected codes, but to be significantly less error robust than a certain code found by a heuristic algorithm. We formulate this optimization problem as a Quadratic Assignment Problem and use this to formally verify that the code found by the heuristic algorithm is the global optimum. We also argue that it is strongly misleading to compare the genetic code only with codes sampled from the fixed block model, because the real code space is orders of magnitude larger. We thus enlarge the space from which random codes can be sampled from approximately 2.433 × 10(18) codes to approximately 5.908 × 10(45) codes. We do this by leaving the fixed block model, and using the wobble rules to formulate the characteristics acceptable for a genetic code. By relaxing more constraints, three larger spaces are also constructed. Using a modified error function, the genetic code is found to be more error robust compared to a background of randomly generated codes with increasing space size. We point out that these results do not necessarily imply that the code was optimized during evolution for error minimization, but that other mechanisms could be the reason for this error robustness.  相似文献   

10.
In eukaryotes with the universal genetic code a single class I release factor (eRF1) most probably recognizes all stop codons (UAA, UAG and UGA) and is essential for termination of nascent peptide synthesis. It is well established that stop codons have been reassigned to amino acid codons at least three times among ciliates. The codon specificities of ciliate eRF1s must have been modified to accommodate the variant codes. In this study we have amplified, cloned and sequenced eRF1 genes of two hypotrichous ciliates, Oxytricha trifallax (UAA and UAG for Gln) and Euplotes aediculatus (UGA for Cys). We also sequenced/identified three protist and two archaeal class I RF genes to enlarge the database of eRF1/aRF1s with the universal code. Extensive comparisons between universal code eRF1s and those of Oxytricha, Euplotes, and Tetrahymena which represent three lineages that acquired variant codes independently, provide important clues to identify stop codon-binding regions in eRF1. Domain 1 in the five ciliate eRF1s, particularly the TASNIKS heptapeptide and its adjacent region, differs significantly from domain 1 in universal code eRF1s. This observation suggests that domain 1 contains the codon recognition site, but that the mechanism of eRF1 codon recognition may be more complex than proposed by Nakamura et al. or Knight and Landweber.  相似文献   

11.
On the basis of the principles of Darwinian evolutionary systems laid out earlier, a system is constructed which simulates protein evolution. Two types of situations are studied: adaptation to highest possible alkalinity (“alkalinity model”), and adaptation to an arbitrary sequence (“sequence model”). No restrictions in adaptability were found for the (comparably special) alkalinity model, but severe restrictions were found for the sequence model. Approximately 15% of all possible evolutionary paths from one amino acid to another turned out to be impossible, in the sense that no chain of intermediate steps exists which leads to a higher fitness level, in this case an increased chemical similarity of the two amino acids.The evolutionary efficiency of the natural genetic code was also investigated by comparing it with two classes of artificially constructed codes: semi-random and random codes. It was found that the natural code possesses the highest evolutionary efficiency, given by the mean number of generations required to reach identity in 5 of 10 sites, if originally all 10 were different. Closest to the natural code in evolutionary efficiency were the random codes, next, the semi-random codes.This pattern could be explained by a theoretical measure, called the code efficiency. The most important component of the code efficiency is the percentage of impossible paths. The natural code is far superior to the other code types in this respect. However, the random codes are superior to the natural code with respect to the mean shortest path length of the possible paths, the other important component of the code efficiency.It is suggested that the natural genetic code might have arisen from a semi-random code during a process of optimizing several of its features, of which the evolutionary efficiency is a very important one; or that the natural code is the most efficient edition of a large variety of semi-random codes which originated by chance.  相似文献   

12.

Although the knowledge about biological systems has advanced exponentially in recent decades, it is surprising to realize that the very definition of Life keeps presenting theoretical challenges. Even if several lines of reasoning seek to identify the essence of life phenomenon, most of these thoughts contain fundamental problem in their basic conceptual structure. Most concepts fail to identify either necessary or sufficient features to define life. Here, we analyzed the main conceptual frameworks regarding theoretical aspects that have been supporting the most accepted concepts of life, such as (i) the physical, (ii) the cellular and (iii) the molecular approaches. Based on an ontological analysis, we propose that Life should not be positioned under the ontological category of Matter. Yet, life should be better understood under the top-level ontology of “Process”. Exercising an epistemological approach, we propose that the essential characteristic that pervades each and every living being is the presence of organic codes. Therefore, we explore theories in biosemiotics and code biology in order to propose a clear concept of life as a macrocode composed by multiple inter-related coding layers. This way, as life is a sort of metaphysical process of encoding, the living beings became the molecular materialization of that process. From the proposed concept, we show that the evolutionary process is a fundamental characteristic for life’s maintenance but it is not necessary to define life, as many organisms are clearly alive but they do not participate in the evolutionary process (such as infertile hybrids). The current proposition opens a fertile field of debate in astrobiology, epistemology, biosemiotics, code biology and robotics.

  相似文献   

13.
During the last 30 years, a number of alterations to the standard genetic code have been uncovered both in prokaryotes and eukaryotic nuclear and mitochondrial genomes. But, the study of the evolutionary pathways and molecular mechanisms of codon identity redefinition has been largely ignored due to the assumption that non-standard genetic codes can only evolve through neutral evolutionary mechanisms and that they have no functional significance. The recent discovery of a genetic code change in the genus Candida that evolved through an ambiguous messenger RNA decoding mechanism is bringing that naive assumption to an abrupt end by showing, in a rather dramatic way, that genetic code changes have profound physiological and evolutionary consequences for the species that redefine codon identity. In this paper, the recent data on the evolution of the Candida genetic code are reviewed and an experimental framework based on forced evolution, molecular genetics and comparative and functional genomics methodologies is put forward for the study of non-standard genetic codes and genetic code ambiguity in general. Additionally, the importance of using Saccharomyces cerevisiae as a model organism for elucidating the evolutionary pathway of the Candida and other genetic code changes is emphasised.  相似文献   

14.
Molecular codes translate information written in one type of molecule into another molecular language. We introduce a simple model that treats molecular codes as noisy information channels. An optimal code is a channel that conveys information accurately and efficiently while keeping down the impact of errors. The equipoise of the three conflicting needs, for minimal error load, minimal cost of resources and maximal diversity of vocabulary, defines the fitness of the code. The model suggests a mechanism for the emergence of a code when evolution varies the parameters that control this equipoise and the mapping between the two molecular languages becomes non-random. This mechanism is demonstrated by a simple toy model that is formally equivalent to a mean-field Ising magnet.  相似文献   

15.
Barbieri introduced and developed the concept of organic codes. The most basic of them is the genetic code, a set of correspondence rules between otherwise unrelated sequences: strings of nucleotides on the one hand, polypeptidic chains on the other hand. Barbieri noticed that it implies ‘coding by convention’ as arbitrary as the semantic relations a language establishes between words and outer objects. Moreover, the major transitions in life evolution originated in new organic codes similarly involving conventional rules. Independently, dealing with heredity as communication over time and relying on information theory, we asserted that the conservation of genomes over the ages demands that error-correcting codes make them resilient to casual errors. Moreover, the better conservation of very old parts of the genome demands that they result from combining successively established nested codes such that the older an information, the more numerous component codes protect it. Barbieri’s concept of organic code and that of genomic error-correcting code may seem unrelated. We show however that organic codes actually entail error-correcting properties. Error-correcting, in general, results from constraints being imposed on a set of sequences. Mathematical equalities are conveniently used in communication engineering for expressing constraints but error correction only needs that constraints exist. Biological sequences are similarly endowed with error-correcting ability by physical-chemical or linguistic constraints, thus defining ‘soft codes’. These constraints are moreover presumably efficient for correcting errors. Insofar as biological sequences are subjected to constraints, organic codes necessarily involve soft codes, and their successive onset results in the nested structure we hypothesized. Organic codes are generated and maintained by means of molecular ‘semantic feedback loops’. Each of these loops involves genes which code for proteins, the enzymatic action of which controls a function needed for the protein assembly. Taken together, thus, they control the assembly of their own structure as instructed by the genome and, once closed, these loops ensure their own conservation. However, the semantic feedback loops do not prevent the genome lengthening. It increases both the redundancy of the genome (as an error-correcting code) and the information quantity it bears, thus improving the genome reliability and the specificity of the enzymes, which enables further evolution.  相似文献   

16.
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.  相似文献   

17.
Progress in molecular biology has revealed profound relations between linguistic and genomic sciences, mainly through advances in bioinformatics. The structural symmetries between biochemical and verbal syntaxes raise the question of their origins: did they emerge independently, or did one arise from the other? Does the genetic code contain the traces of a protolanguage, a universal grammar whose gradual evolution and successive mutations progressively led to the polymorphism of natural languages? To explore this question, we review the isomorphism of the genetic code and verbal codes from lexical, syntactic, semantic and pragmatic standpoints. We discuss the limits of these symmetries and their anthropomorphic connotations. We observe the gradual evolution of species and languages according to parallel mechanisms, and the genetic roots of the physiology of language. In conclusion, we hypothesize that human observers may not be projecting linguistic frameworks onto genomic structures. Rather, it could be their linguistic faculties that reflect the grammatical structure of genetic code.  相似文献   

18.
The review surveys the information, including the most recent data, on the evolution of genetic code in ciliates, which is among the few codes deviating from the universal one. We discuss the cases of recurrent, independently arising deviations from the assignments of standard codons of polypeptide chain termination in the mitochondrial and nuclear genomes of ciliates and some other protozoans. Possible molecular mechanisms are considered, which underlie deviations from standard termination code to coding glutamine (codon UAA and UAG) and cystein or tryptophane (codon UGA) in the nuclear genome. Critical analysis of the main hypotheses on the evolution of secondary deviations from the universal code in ciliates is presented.  相似文献   

19.
Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. We analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the difference between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer. Bioelectromagnetics 18:99–110, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
MATTI HÄYRY 《Bioethics》2009,23(9):483-485
Ethics can be understood as a code of behaviour or as the study of codes of behaviour. While the mission of the International Association of Bioethics is a scholarly examination of moral issues in health care and the biological sciences, many people in the field believe that it is also their task to create new and better codes of practice. Both ways of doing bioethics are sound, but it is important to be aware of the distinction. In this paper, I will study the sources and aims of ethics and suggest a code of conduct for bioethicists based on recognition, responsibility, and respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号