首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemogenomics involves the combination of a compound’s effect on biological targets together with modern genomics technologies. The merger of these two methodologies is creating a new way to screen for compound–target interactions, as well as map chemical and biological space in a parallel fashion. The challenge associated with mining complex databases has initiated the development of many novel in silico tools to profile and analyze data in a systematic way. The ability to analyze the combinatorial effects of chemical libraries on biological systems will aid the discovery of new therapeutic entities. Chemogenomics provides a tool for the rapid validation of novel targeted therapeutics, where a specific molecular target is modulated by a small molecule. Along with targeted therapies comes the ability to discovery pathway nodes where a single molecular target might be an essential component of more than one disease. Several disease areas will benefit directly from the chemogenomics approach, the most advanced being cancer. A genetic loss-of-function screen can be modulated in the presence of a compound to search for genes or pathways involved in the compound’s activity. Several recent papers highlight how chemogenomics is changing with RNA interference-based screening and shaping the discovery of new targeted therapies. Together, chemical and RNA interference-based screens open the door for a new way to discovery disease-associated genes and novel targeted therapies.  相似文献   

2.
Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. This Opinion article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and opportunities that will impact drug discovery. Chemogenomics aims towards the systematic identification of small molecules that interact with the products of the genome and modulate their biological function. While historically the approach is based on efforts that systematically explore target gene families like kinases, today additional knowledge-based systematization principles are followed within early drug discovery projects which aim to biologically validate the targets and to identify starting points for chemical lead optimization. While the expectations of chemogenomics are very high, the reality of drug discovery is quite sobering with very high project attrition rates. This article summarizes the different knowledge-based chemogenomics strategies that are followed and outlines the challenges and potential opportunities that will impact drug discovery.  相似文献   

3.
The recent human genome initiatives have led to the discovery of a multitude of genes that are potentially associated with various pathologic conditions and, thus, have opened new horizons in drug discovery. Simultaneously, annotated chemical libraries have emerged as information-rich databases to integrate biological and chemical data. They can be useful for the discovery of new pharmaceutical leads, the validation of new biotargets and the determination of the structural basis of ligand selectivity within target families. Annotated libraries provide a strong information basis for computational design of target-directed combinatorial libraries, which are a key component of modern drug discovery. Today, the rational design of chemical libraries enhanced with chemogenomics data is a new area of progressive research.  相似文献   

4.
李嫣  王任小 《生命科学》2009,(3):400-407
在后基因组时代,化学基因组技术在药物作用靶点的确认、小分子化合物对通路的作用,以及小分子先导化合物的识别等方面都有着广泛的应用,为新药研发提供了新的技术方法。本文主要介绍了当前几种基于化学基因组信息来预测小分子化合物潜在生物靶标的理论方法(包括化学相似性搜索方法、反向分子对接方法、数据挖掘方法以及生物活性谱图分析方法),并分析了这些方法的优缺点以及应用前景。  相似文献   

5.
Personalized medicine: revolutionizing drug discovery and patient care.   总被引:5,自引:0,他引:5  
Advances in human genome research are opening the door to a new paradigm for practising medicine that promises to transform healthcare. Personalized medicine, the use of marker-assisted diagnosis and targeted therapies derived from an individual's molecular profile, will impact the way drugs are developed and medicine is practiced. Knowledge of the molecular basis of disease will lead to novel target identification, toxicogenomic markers to screen compounds and improved selection of clinical trial patients, which will fundamentally change the pharmaceutical industry. The traditional linear process of drug discovery and development will be replaced by an integrated and heuristic approach. In addition, patient care will be revolutionized through the use of novel molecular predisposition, screening, diagnostic, prognostic, pharmacogenomic and monitoring markers. Although numerous challenges will need to be met to make personalized medicine a reality, with time, this approach will replace the traditional trial-and-error practice of medicine.  相似文献   

6.
Lam SH  Mathavan S  Tong Y  Li H  Karuturi RK  Wu Y  Vega VB  Liu ET  Gong Z 《PLoS genetics》2008,4(7):e1000121
The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.  相似文献   

7.
8.
Chemical probes are essential tools used to study and modulate biological systems. Here, we describe some of the recent scientific advancement in the field of chemical biology, as well as how the advent of new technologies is redefining the criteria of ‘good’ chemical probes and influencing the discovery of valuable drug leads. In this review, we report selected examples of the usage of linkered and linker-free chemical probes for target identification, biological discovery, and general mechanistic understanding. We also discuss the promises of chemogenomics libraries in phenotypic screens, as well as the limitation of their usage to identify the modulation of new targets and biology.  相似文献   

9.
There is significant need to identify novel prostate cancer drug targets because current hormone therapies eventually fail, leading to a drug-resistant and fatal disease termed castration-resistant prostate cancer. To functionally identify genes that, when silenced, decrease prostate cancer cell proliferation or induce cell death in combination with antiandrogens, we employed an RNA interference-based short hairpin RNA barcode screen in LNCaP human prostate cancer cells. We identified and validated four candidate genes (AKT1, PSMC1, STRADA, and TTK) that impaired growth when silenced in androgen receptor positive prostate cancer cells and enhanced the antiproliferative effects of antiandrogens. Inhibition of AKT with a pharmacologic inhibitor also induced apoptosis when combined with antiandrogens, consistent with recent evidence for PI3K and AR pathway crosstalk in prostate cancer cells. Recovery of hairpins targeting a known prostate cancer pathway validates the utility of shRNA library screening in prostate cancer as a broad strategy to identify new candidate drug targets.  相似文献   

10.
Combination antibiotic therapies are being increasingly used in the clinic to enhance potency and counter drug resistance. However, the large search space of candidate drugs and dosage regimes makes the identification of effective combinations highly challenging. Here, we present a computational approach called INDIGO, which uses chemogenomics data to predict antibiotic combinations that interact synergistically or antagonistically in inhibiting bacterial growth. INDIGO quantifies the influence of individual chemical–genetic interactions on synergy and antagonism and significantly outperforms existing approaches based on experimental evaluation of novel predictions in Escherichia coli. Our analysis revealed a core set of genes and pathways (e.g. central metabolism) that are predictive of antibiotic interactions. By identifying the interactions that are associated with orthologous genes, we successfully estimated drug‐interaction outcomes in the bacterial pathogens Mycobacterium tuberculosis and Staphylococcus aureus, using the E. coli INDIGO model. INDIGO thus enables the discovery of effective combination therapies in less‐studied pathogens by leveraging chemogenomics data in model organisms.  相似文献   

11.
The knowledge of complete sequences of different organisms is dramatically changing the landscape of biological research and pharmaceutical development. We are experiencing a transition from a trial-and-error approach in traditional biological research and natural product drug discovery to a systematic operation in genomics and target-specific drug design and selection. Small, cell-permeable and target-specific chemical ligands are particularly useful in systematic genomic approaches to study biological questions. On the other hand, genomic sequence information, comparative and structural genomics, when combined with the cutting edge technologies in synthetic chemistry and ligand screening/identification, provide a powerful way to produce target-specific and/or function-specific chemical ligands and drugs. Chemical genomics or chemogenomics is a new term that describes the development of target-specific chemical ligands and the use of such chemical ligands to globally study gene and protein functions. We anticipate that chemical genomics plays a critical role in the genomic age of biological research and drug discovery.  相似文献   

12.
Classifying kinases based entirely on small molecule selectivity data is a new approach to drug discovery that allows scientists to understand relationships between targets. This approach combines the understanding of small molecules and targets, and thereby assists the researcher in finding new targets for existing molecules or understanding selectivity and polypharmacology of molecules in related targets. Currently, structural information is available for relatively few of the protein kinases encoded in the human genome (7% of the estimated 518); however, even the current knowledge base, when paired with structure-based design techniques, can assist in the identification and optimization of novel kinase inhibitors across the entire protein class. Chemogenomics attempts to combine genomic data, structural biological data, classical dendrograms, and selectivity data to explore, define, and classify the medicinally relevant kinase space. Exploitation of this information in the discovery of kinase inhibitors defines practical kinase chemogenomics (kinomics). In this paper, we review the available information on kinase targets and their inhibitors, and present the relationships between the various classification schema for kinase space. In particular, we present the first dendrogram of kinases based entirely on small molecule selectivity data. We find that the selectivity dendrogram differs from sequence-based clustering mostly in the higher-level groupings of the smaller clusters, and remains very comparable for closely homologous targets. Highly homologous kinases are, on average, inhibited comparably by small molecules. This observation, although intuitive, is very important to the process of target selection, as one would expect difficulty in achieving inhibitor selectivity for kinases that share high sequence identity.  相似文献   

13.
The increasing amount of chemogenomics data, that is, activity measurements of many compounds across a variety of biological targets, allows for better understanding of pharmacology in a broad biological context. Rather than assessing activity at individual biological targets, today understanding of compound interaction with complex biological systems and molecular pathways is often sought in phenotypic screens. This perspective poses novel challenges to structure-activity relationship (SAR) assessment. Today, the bottleneck of drug discovery lies in the understanding of SAR of rich datasets that go beyond single targets in the context of biological pathways, potential off-targets, and complex selectivity profiles. To aid in the understanding and interpretation of such complex SAR, we introduce Chemotography (chemotype chromatography), which encodes chemical space using a color spectrum by combining clustering and multidimensional scaling. Rich biological data in our approach were visualized using spatial dimensions traditionally reserved for chemical space. This allowed us to analyze SAR in the context of target hierarchies and phylogenetic trees, two-target activity scatter plots, and biological pathways. Chemotography, in combination with the Kyoto Encyclopedia of Genes and Genomes (KEGG), also allowed us to extract pathway-relevant SAR from the ChEMBL database. We identified chemotypes showing polypharmacology and selectivity-conferring scaffolds, even in cases where individual compounds have not been tested against all relevant targets. In addition, we analyzed SAR in ChEMBL across the entire Kinome, going beyond individual compounds. Our method combines the strengths of chemical space visualization for SAR analysis and graphical representation of complex biological data. Chemotography is a new paradigm for chemogenomic data visualization and its versatile applications presented here may allow for improved assessment of SAR in biological context, such as phenotypic assay hit lists.  相似文献   

14.
15.
Presented in a paper in the September issue of Molecular Cell, Aza-Blanc et al. used an RNA interference-based genetic screen to identify genes that modulate sensitivity to the apoptosis-inducing ligand TRAIL. The age of mammalian cell genetic screens has begun.  相似文献   

16.
17.
The drug discovery process pursued by major pharmaceutical companies for many years starts with target identification followed by high-throughput screening (HTS) with the goal of identifying lead compounds. To accomplish this goal, significant resources are invested into automation of the screening process or HTS. Robotic systems capable of handling thousands of data points per day are implemented across the pharmaceutical sector. Many of these systems are amenable to handling cell-based screening protocols as well. On the other hand, as companies strive to develop innovative products based on novel mechanisms of action(s), one of the current bottlenecks of the industry is the target validation process. Traditionally, bioinformatics and HTS groups operate separately at different stages of the drug discovery process. The authors describe the convergence and integration of HTS and bioinformatics to perform high-throughput target functional identification and validation. As an example of this approach, they initiated a project with a functional cell-based screen for a biological process of interest using libraries of small interfering RNA (siRNA) molecules. In this protocol, siRNAs function as potent gene-specific inhibitors. siRNA-mediated knockdown of the target genes is confirmed by TaqMan analysis, and genes with impacts on biological functions of interest are selected for further analysis. Once the genes are confirmed and further validated, they may be used for HTS to yield lead compounds.  相似文献   

18.
Conventional drug discovery approaches require a priori selection of an appropriate molecular target, but it is often not obvious which biological pathways must be targeted to reverse a disease phenotype. Phenotype-based screens offer the potential to identify pathways and potential therapies that influence disease processes. The zebrafish mutation gridlock (grl, affecting the gene hey2) disrupts aortic blood flow in a region and physiological manner akin to aortic coarctation in humans. Here we use a whole-organism, phenotype-based, small-molecule screen to discover a class of compounds that suppress the coarctation phenotype and permit survival to adulthood. These compounds function during the specification and migration of angioblasts. They act to upregulate expression of vascular endothelial growth factor (VEGF), and the activation of the VEGF pathway is sufficient to suppress the gridlock phenotype. Thus, organism-based screens allow the discovery of small molecules that ameliorate complex dysmorphic syndromes even without targeting the affected gene directly.  相似文献   

19.
From the start of the pharmaceutical research natural products played a key role in drug discovery and development. Over time many discoveries of fundamental new biology were triggered by the unique biological activity of natural products. Unprecedented chemical structures, novel chemotypes, often pave the way to investigate new biology and to explore new pathways and targets. This review summarizes the recent results in the area with a focus on research done in the laboratories of Novartis Institutes for BioMedical Research. We aim to put the technological advances in target identification techniques in the context to the current revival of phenotypic screening and the increasingly complex biological questions related to drug discovery.  相似文献   

20.
The scientific techniques used in molecular biological research and drug discovery have changed dramatically over the past 10 years due to the influence of genomics, proteomics and bioinformatics. Furthermore, genomics and functional genomics are now merging into a new scientific approach called chemogenomics. Advancements in the study of molecular cell biology are dependent upon "omics" researchers realizing the importance of and using the experimental tools currently available to cell biologists. For example, novel microscopic techniques utilizing advanced computer imaging allow for the examination of live specimens in a fourth dimension, viz., time. Yet, molecular biologists have not taken full advantage of these and other traditional and novel cell biology techniques for the further advancement of genomic and proteomic-oriented research. The application of traditional and novel cellular biological techniques will enhance the science of genomics. The authors hypothesize that a stronger interdisciplinary approach must be taken between cell biology (and its closely related fields) and genomics, proteomics and bio-chemoinformatics. Since there is a lot of confusion regarding many of the "omics" definitions, this article also clarifies some of the basic terminology used in genomics, and related fields. It also reviews the current status and future potential of chemogenomics and its relationship to cell biology. The authors also discuss and expand upon the differences between chemogenomics and the relatively new term--chemoproteomics. We conclude that the advances in cell biology methods and approaches and their adoption by "omics" researchers will allow scientists to maximize our knowledge about life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号