首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Many tumor suppressors play an important role in the DNA damage pathway. Zinc finger protein 668 (ZNF668) has recently been identified as one of the potential tumor suppressors in breast cancer, but its function in DNA damage response is unknown. Herein, we report that ZNF668 is a regulator of DNA repair. ZNF668 knockdown impairs cell survival after DNA damage without affecting the ATM/ATR DNA-damage signaling cascade. However, recruitment of repair proteins to DNA lesions is decreased. In response to IR, ZNF668 knockdown reduces Tip60-H2AX interaction and impairs IR-induced histone H2AX hyperacetylation, thus impairing chromatin relaxation. Impaired chromatin relaxation causes decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after IR. In addition, ZNF668 knockdown decreased RPA phosphorylation and its recruitment to DNA damage foci in response to UV. In both IR and UV damage responses, chromatin relaxation counteracted the impaired loading of repair proteins and DNA repair defects in ZNF668-deficient U2OS cells, indicating that impeded chromatin accessibility at sites of DNA breaks caused the DNA repair defects observed in the absence of ZNF668. Our findings suggest that ZNF668 is a key molecule that links chromatin relaxation with DNA damage response in DNA repair control.  相似文献   

3.
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a “binary death signal” to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14ARF inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.  相似文献   

4.
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a “binary death signal” to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14ARF inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.  相似文献   

5.
《Molecular cell》2022,82(24):4627-4646.e14
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
The molecular mechanisms controlling post-translational modifications of p21 have been pursued assiduously in recent years. Here, utilizing mass-spectrometry analysis and site-specific acetyl-p21 antibody, two lysine residues of p21, located at amino-acid sites 161 and 163, were identified as Tip60-mediated acetylation targets for the first time. Detection of adriamycin-induced p21 acetylation, which disappeared after Tip60 depletion with concomitant destabilization of p21 and disruption of G1 arrest, suggested that Tip60-mediated p21 acetylation is necessary for DNA damage-induced cell-cycle regulation. The ability of 2KQ, a mimetic of acetylated p21, to induce cell-cycle arrest and senescence was significantly enhanced in p21 null MEFs compared with those of cells expressing wild-type p21. Together, these observations demonstrate that Tip60-mediated p21 acetylation is a novel and essential regulatory process required for p21-dependent DNA damage-induced cell-cycle arrest.  相似文献   

8.
乙酰基转移酶Tip60(KAT5)的功能研究进展   总被引:1,自引:0,他引:1  
Tip60(KAT5)属于MYST乙酰基转移酶家族,同时它也是进化上非常保守的Nu A4蛋白质复合体的重要成员.过去十几年的研究证实,Tip60一方面可以作为转录调控因子结合核受体(如雄激素受体,AR)或c-MYC、AICD/Fe65、NCo R、E2F等转录因子来激活或抑制下游基因的表达,另一方面,KAT5可以乙酰化一系列蛋白来调控这些蛋白质的活性及稳定性,进而调控DNA损伤修复反应、细胞周期进程、细胞周期检查点的激活、凋亡、代谢及自噬等重要细胞功能.此外,Tip60在肿瘤的发生发展及转移、胚胎发育等过程中也发挥着至关重要的作用.本文将主要对Tip60近几年的研究进展做一个综述.  相似文献   

9.
10.
While numerous small ubiquitin‐like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid‐dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ‐K‐X‐E/D consensus motif, such as CBP and Elk‐1, but not substrates with core ψ‐K‐X‐E/D motif alone or SUMO‐interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia‐elicited modulation of sumoylation and target gene expression of CBP and Elk‐1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.  相似文献   

11.
Tip60 is a key member of the MYST family of histone acetyltransferases and involved in a broad spectrum of cellular pathways and disease conditions. So far, small molecule inhibitors of Tip60 and other members of MYST HATs are rarely reported. To discover new small molecule inhibitors of Tip60 as mechanistic tools for functional study and as chemical leads for therapeutic development, we performed virtual screening using the crystal structure of Esa1 (the yeast homolog of Tip60) on a small molecule library database. Radioactive acetylation assays were carried out to further evaluate the virtual screen hits. Several compounds with new structural scaffolds were identified with micromolar inhibition potency for Tip60 from the biochemical studies. Further, computer modeling and kinetic assays suggest that these molecules target the acetyl-CoA binding site in Tip60. These new inhibitors provide valuable chemical hits to develop further potent inhibitors for the MYST HATs.  相似文献   

12.
Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of γ-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.  相似文献   

13.
14.
The FA (Fanconi anaemia) FANCD2 protein is pivotal in the cellular response to DNA interstrand cross‐links. Establishing cells expressing exogenous FANCD2 has proven to be difficult compared with other DNA repair genes. We find that in transformed normal human fibroblasts, exogenous nuclear expression of FANCD2 induces apoptosis, dependent specifically on exons 10–13. This is the same region required for interaction with the histone acetyltransferase, Tip60. Deletion of exons 10–13 from FANCD2 N‐terminal constructs (nucleotides 1–1100) eliminates the binary interaction with Tip60 and the cellular apoptotic response; moreover, cells can stably express FANCD2 at high levels if Tip60 is depleted. The results indicate that FANCD2‐sponsored apoptosis requires an interaction with Tip60 and depends on Tip60.  相似文献   

15.
SRSF2 is a serine/arginine-rich protein belonging to the family of SR proteins that are crucial regulators of constitutive and alternative pre-mRNA splicing. Although it is well known that phosphorylation inside RS domain controls activity of SR proteins, other post-translational modifications regulating SRSF2 functions have not been described to date. In this study, we provide the first evidence that the acetyltransferase Tip60 acetylates SRSF2 on its lysine 52 residue inside the RNA recognition motif, and promotes its proteasomal degradation. We also demonstrate that the deacetylase HDAC6 counters this acetylation and acts as a positive regulator of SRSF2 protein level. In addition, we show that Tip60 downregulates SRSF2 phosphorylation by inhibiting the nuclear translocation of both SRPK1 and SRPK2 kinases. Finally, we demonstrate that this acetylation/phosphorylation signalling network controls SRSF2 accumulation as well as caspase-8 pre-mRNA splicing in response to cisplatin and determines whether cells undergo apoptosis or G(2)/M cell cycle arrest. Taken together, these results unravel lysine acetylation as a crucial post-translational modification regulating SRSF2 protein level and activity in response to genotoxic stress.  相似文献   

16.
Ataxia-telangiectasia (AT) is an autosomal recessive genetic disease characterized by immunological deficiencies, neurological degeneration, developmental abnormalities and an increased risk of cancer. Ataxia-telangiectasia group D (ATDC) was initially described as a gene related to AT. Ataxia-telangiectasia group D, also known as TRIM29, is structurally a member of the tripartite motif (TRIM) family of proteins, some of which have been reported to be highly expressed in some human carcinomas, but the involvement of TRIM29 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that TRIM29 binds to Tip60, which has been reported as a cellular acetyltransferase protein. Overexpression of TRIM29 promoted degradation and changed localization of Tip60 and reduced acetylation of p53 at lysine 120 by Tip60, resulting in enhancement of cell growth and transforming activity. In addition, we found that TRIM29 suppresses apoptosis induced by UV irradiation in HCT116 cell lines. These findings suggest that TRIM29 functions as an oncogene that promotes tumor growth.  相似文献   

17.
18.
Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.  相似文献   

19.
20.
Background: The aminothiol WR1065 is a highly effective free radical scavenger which can protect cells from the cytotoxic effects of ionizing radiation. Currently, WR1065 is used clinically to protect patients from radiation injury occurring during radiation therapy protocols. However, it is becoming increasingly clear that WR1065 can alter radiosensitivity through a mechanism which is independent of its ability to function as a free radical scavenger. Here, we examined the ability of WR1065 to directly regulate signaling pathways involved in the DNA damage response. Methodology: The ability of WR1065 to enhance the survival of irradiated bone marrow cells and primary cultures was established. DNA damage signaling was monitored by measuring activation of the ATM kinase by western blot analysis and activation of Tip60 using an in vitro acetylation assay. Tip60 function was abrogated by expression of a catalytically inactive Tip60, and the effect on radiosensitivity evaluated. Principal findings: Treatment of cells with WR1065 led to a small but significant increase in the kinase activity of ATM. Further, WR1065 robustly activated the Tip60 acetyltransferase, which is a key upstream regulator of the ATM kinase. In addition, WR1065 directly activated the acetyltransferase activity of purified Tip60 in vitro, indicating a direct interaction between WR1065 and Tip60. Finally, cells with reduced levels of Tip60 activity exhibited a significant reduction in radioprotection by WR1065. Conclusions: Direct regulation of Tip60''s acetyltransferase activity by WR1065 makes a significant contribution to the radioprotective effects of WR1065. Activators of Tip60 may therefore make effective clinical radioprotectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号