首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olivari S  Molinari M 《FEBS letters》2007,581(19):3658-3664
Proteins synthesized in the endoplasmic reticulum (ER) lumen are exposed to several dedicated chaperones and folding factors that ensure efficient maturation. Nevertheless, protein folding remains error-prone and mutations in the polypeptide sequence may significantly reduce folding-efficiency. Folding-incompetent proteins carrying N-glycans are extracted from futile folding cycles in the calnexin chaperone system upon intervention of EDEM1, EDEM2 and EDEM3, three ER-stress-induced members of the glycosyl hydrolase 47 family. This review describes current knowledge about mechanisms regulating folding and disposal of glycoproteins.  相似文献   

2.
Although calnexin is thought to function as a molecular chaperone for glycoproteins, a prevalent view is that it cannot distinguish between protein conformational states, binding solely through its lectin site to monoglucosylated oligosaccharides. Using purified components in vitro, calnexin effectively prevented the aggregation not only of glycoproteins bearing monoglucosylated oligosaccharides but also proteins lacking N-glycans, an effect enhanced by ATP. It also suppressed the thermal denaturation of nonglycosylated proteins and enhanced their refolding in conjunction with other cellular components. Calnexin formed stable complexes with unfolded conformers of these proteins but not with the native molecules. Therefore, in addition to being a lectin, calnexin functions as a bona fide molecular chaperone capable of interacting with polypeptide segments of folding glycoproteins.  相似文献   

3.
An endoplasmic reticulum (ER) quality control system assists in efficient folding and disposal of misfolded proteins. N-linked glycans are critical in these events because their composition dictates interactions with molecular chaperones. UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a key quality control factor of the ER. It adds glucoses to N-linked glycans of nonglucosylated substrates that fail a quality control test, supporting additional rounds of chaperone binding and ER retention. How UGT1 functions in its native environment is poorly understood. The role of UGT1 in the maturation of glycoproteins at basal expression levels was analyzed. Prosaposin was identified as a prominent endogenous UGT1 substrate. A dramatic decrease in the secretion of prosaposin was observed in ugt1−/− cells with prosaposin localized to large juxtanuclear aggresome-like inclusions, which is indicative of its misfolding and the essential role that UGT1 plays in its proper maturation. A model is proposed that explains how UGT1 may aid in the folding of sequential domain–containing proteins such as prosaposin.  相似文献   

4.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

5.
To analyze the role of glucose trimming and reglucosylation in the binding of substrate proteins to calnexin in the endoplasmic reticulum (ER) of living cells, we made use of the thermosensitive vesicular stomatitis virus tsO45 glycoprotein (G protein). At nonpermissive temperature the G protein failed to fold completely and remained bound to calnexin. When the cells were shifted to permissive temperature, complete folding occurred accompanied by glucosidase-mediated elimination of calnexin-G protein complexes. If release from calnexin was blocked during the temperature shift by inhibiting the glucosidases, folding occurred, albeit at a reduced rate. In contrast, when unfolded by a shift from permissive to nonpermissive temperature, the G protein was reglucosylated rapidly and became capable of rebinding to calnexin. The rate at which calnexin binding occurred showed a 20-min delay that was explained by accumulation of the G protein in calnexin-free exit sites of the ER. These contained the glucosyltransferase responsible for reglucosylation of misfolded glycoproteins but had little or no calnexin. After unfolding and reglucosylation, the G proteins moved slowly from these structures back to the ER where they reassociated with the chaperone. Taken together, these results in live cells fully supported the lectin-only model of calnexin function. The ER exit sites emerged as a potentially important location for components of the quality control system.  相似文献   

6.
A third of the human genome encodes N-glycosylated proteins. These are co-translationally translocated into the lumen/membrane of the endoplasmic reticulum (ER) where they fold and assemble before they are transported to their final destination. Here, we show that calnexin, a major ER chaperone involved in glycoprotein folding is palmitoylated and that this modification is mediated by the ER palmitoyltransferase DHHC6. This modification leads to the preferential localization of calnexin to the perinuclear rough ER, at the expense of ER tubules. Moreover, palmitoylation mediates the association of calnexin with the ribosome-translocon complex (RTC) leading to the formation of a supercomplex that recruits the actin cytoskeleton, leading to further stabilization of the assembly. When formation of the calnexin-RTC supercomplex was affected by DHHC6 silencing, mutation of calnexin palmitoylation sites or actin depolymerization, folding of glycoproteins was impaired. Our findings thus show that calnexin is a stable component of the RTC in a manner that is exquisitely dependent on its palmitoylation status. This association is essential for the chaperone to capture its client proteins as they emerge from the translocon, acquire their N-linked glycans and initiate folding.  相似文献   

7.
Calnexin, calreticulin, and ERp57   总被引:3,自引:0,他引:3  
In eukaryotic cells, the endoplasmic reticulum (ER) plays an essential role in the synthesis and maturation of a variety of important secretory and membrane proteins. For glycoproteins, the ER possesses a dedicated maturation system, which assists folding and ensures the quality of final products before ER release. Essential components of this system include the lectin chaperones calnexin (CNX) and calreticulin (CRT) and their associated co-chaperone ERp57, a glycoprotein specific thiol-disulfide oxidoreductase. The significance of this system is underscored by the fact that CNX and CRT interact with practically all glycoproteins investigated to date, and by the debilitating phenotypes revealed in knockout mice deficient in either gene. Compared to other important chaperone systems, such as the Hsp70s, Hsp90s and GroEL/GroES, the principles whereby this system works at the molecular level are relatively poorly understood. However, recent structural and biochemical data have provided important new insights into this chaperone system and present a solid basis for further mechanistic studies.  相似文献   

8.
The involvement of N-glycans in the folding of influenza virus hemagglutinin (HA) was analyzed in two CHO-derived glycosylation mutants exhibiting a thermosensitive defect for secretion of human placental alkaline phosphatase. Truncated Man(5)GlcNAc(2)oligosaccharides with one or three glucose residues are attached to proteins of the MadIA214 and B3F7AP2-1 mutant cells, respectively. Newly synthesized proteins retained in these cells carry a Man(4)trimmed glycan generated by a mannosidase different from the ER mannosidases I and II and suggesting a recycling through the Golgi complex. The glucosidase inhibitor castanospermine affects the binding of HA folding intermediates to the lectin-like chaperone calnexin in B3F7AP2-1 but not in MadIA214 cells. We demonstrated that calnexin interacts in vivo with truncated Man(5)derivatives. In MadIA214 cells, this is only possible when Man(5)GlcNAc(2)on protein becomes reglucosylated. The pattern of intermediates seen during the folding of HA in the MadIA214 and B3F7AP2-1 mutant cell lines is different than in control cells. We also observed a variable occupancy of the seven glycosylation-sites. However, even under conditions that restore glycosylation of all sites, the folding intermediates of HA in the mutant cells still remain heterogeneous. Our results demonstrate that addition of truncated N-glycans interferes extensively with the folding of newly synthesized proteins in vivo.  相似文献   

9.
Calnexin is a membrane-bound lectin of the endoplasmic reticulum (ER) that binds transiently to newly synthesized glycoproteins. By interacting with oligosaccharides of the form Glc(1)Man(9)GlcNAc(2), calnexin enhances the folding of glycoprotein substrates, retains misfolded variants in the ER, and in some cases participates in their degradation. Calnexin has also been shown to bind polypeptides in vivo that do not possess a glycan of this form and to function in vitro as a molecular chaperone for nonglycosylated proteins. To test the relative importance of the lectin site compared with the polypeptide-binding site, we have generated six calnexin mutants defective in oligosaccharide binding using site-directed mutagenesis. Expressed as glutathione S-transferase fusions, these mutants were still capable of binding ERp57, a thiol oxidoreductase, and preventing the aggregation of a nonglycosylated substrate, citrate synthase. They were, however, unable to bind Glc(1) Man(9)GlcNAc(2) oligosaccharide and were compromised in preventing the aggregation of the monoglucosylated substrate jack bean alpha-mannosidase. Two of these mutants were then engineered into full-length calnexin for heterologous expression in Drosophila cells along with the murine class I histocompatibility molecules K(b) and D(b) as model glycoproteins. In this system, lectin site-defective calnexin was able to replace wild type calnexin in forming a complex with K(b) and D(b) heavy chains and preventing their degradation. Thus, at least for class I molecules, the lectin site of calnexin is dispensable for some of its chaperone functions.  相似文献   

10.
Proteins expressed in the endoplasmic reticulum (ER) are covalently modified by co-translational addition of pre-assembled core glycans (glucose(3)-mannose(9)-N-acetylglucosamine(2)) to asparagines in Asn-X-Ser/Thr motifs. N-Glycan processing is essential for protein quality control in the ER. Cleavages and re-additions of the innermost glucose residue prolong folding attempts in the calnexin cycle. Progressive loss of mannoses is a symptom of long retention in the ER and elicits preparation of terminally misfolded polypeptides for dislocation into the cytosol and proteasome-mediated degradation. The ER stress-induced protein EDEM1 regulates disposal of folding-defective glycoproteins and has been described as a mannose-binding lectin. Here we show that elevation of the intralumenal concentration of EDEM1 accelerates ER-associated degradation (ERAD) by accelerating de-mannosylation of terminally misfolded glycoproteins and by inhibiting formation of covalent aggregates upon release of terminally misfolded ERAD candidates from calnexin. Acceleration of Man(9) or Man(5)N-glycans dismantling upon overexpression was fully blocked by substitution in EDEM1 of one catalytic residue conserved amongst alpha1,2-mannosidases, thus suggesting that EDEM1 is an active mannosidase. This mutation did not affect the chaperone function of EDEM1.  相似文献   

11.
Brockmeier A  Williams DB 《Biochemistry》2006,45(42):12906-12916
Calnexin is a membrane-bound chaperone of the endoplasmic reticulum (ER) that participates in the folding and quality control of newly synthesized glycoproteins. Binding to glycoproteins occurs through a lectin site with specificity for Glc1Man9GlcNAc2 oligosaccharides as well as through a polypeptide binding site that recognizes non-native protein conformations. The latter interaction is somewhat controversial because it is based on observations that calnexin can suppress the aggregation of non-glycosylated substrates at elevated temperature or at low calcium concentrations, conditions that may affect the structural integrity of calnexin. Here, we examine the ability of calnexin to interact with a non-glycosylated substrate under physiological conditions of the ER lumen. We show that the soluble ER luminal domain of calnexin can indeed suppress the aggregation of non-glycosylated firefly luciferase at 37 degrees C and at the normal resting ER calcium concentration of 0.4 mM. However, gradual reduction of calcium below the resting level was accompanied by a progressive loss of native calnexin structure as assessed by thermal stability, protease sensitivity, intrinsic fluorescence, and bis-ANS binding. These assays permitted the characterization of a single calcium binding site on calnexin with a Kd = 0.15 +/- 0.05 mM. We also show that the suppression of firefly luciferase aggregation by calnexin is strongly enhanced in the presence of millimolar concentrations of ATP and that the Kd for ATP binding to calnexin in the presence of 0.4 mM calcium is 0.7 mM. ATP did not alter the overall stability of calnexin but instead triggered the localized exposure of a hydrophobic site on the chaperone. These findings demonstrate that calnexin is a potent molecular chaperone that is capable of suppressing the aggregation of substrates through polypeptide-based interactions under conditions that exist within the ER lumen.  相似文献   

12.
BACE is an aspartic protease involved in the production of a toxic peptide accumulating in the brain of Alzheimer's disease patients. After attainment of the native structure in the endoplasmic reticulum (ER), BACE is released into the secretory pathway. To better understand the mechanisms regulating protein biogenesis in the mammalian ER, we determined the fate of five variants of soluble BACE with 4, 3, 2, 1, or 0 N-linked glycans. The number of N-glycans displayed on BACE correlated directly with folding and secretion rates and with the yield of active BACE harvested from the cell culture media. Addition of a single N-glycan was sufficient to recruit the calnexin chaperone system and/or for oligosaccharide de-glucosylation by the ER-resident α-glucosidase II. Addition of 1–4 N-glycans progressively enhanced the dissociation rate from BiP and reduced the propensity of newly synthesized BACE to enter aberrant soluble and insoluble aggregates. Finally, inhibition of the proteasome increased the yield of active BACE. This shows that active protein normally targeted for destruction can be diverted for secretion, as if for BACE the quality control system would be acting too stringently in the ER lumen, thus causing loss of functional polypeptides.  相似文献   

13.
The folding and assembly of nascent proteins in the endoplasmic reticulum are assisted by the molecular chaperone calnexin, which is itself retained within the endoplasmic reticulum. It was up to now assumed that calnexin was selectively expressed on the surface of immature thymocytes because of a particular characteristic of the protein sorting machinery in these cells. We now report that a small fraction of calnexin is normally expressed on the surface of various cells such as mastocytoma cells, murine splenocytes, fibroblast cells, and human HeLa cells. Surface biotinylation followed by chase culture of living cells revealed that calnexin is continuously delivered to the cell surface and then internalized for lysosomal degradation. These results suggest that there is continuous exocytosis and endocytosis of calnexin, and the amount of calnexin on the plasma membrane results from the balance of the rates of these two events. To study the structural requirement of calnexin for surface expression, we created deletion mutants of calnexin and found that the luminal domain, particularly the glycoprotein binding domain, is necessary. These findings suggest that the surface expression of calnexin depends on the association with glycoproteins and that calnexin may play a certain role as a chaperone on the plasma membrane as well.  相似文献   

14.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.  相似文献   

15.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

16.
Newly synthesized glycoproteins interact during folding and quality control in the ER with calnexin and calreticulin, two lectins specific for monoglucosylated oligosaccharides. Binding and release are regulated by two enzymes, glucosidase II and UDP-Glc:glycoprotein:glycosyltransferase (GT), which cyclically remove and reattach the essential glucose residues on the N-linked oligosaccharides. GT acts as a folding sensor in the cycle, selectively reglucosylating incompletely folded glycoproteins and promoting binding of its substrates to the lectins. To investigate how nonnative protein conformations are recognized and directed to this unique chaperone system, we analyzed the interaction of GT with a series of model substrates with well defined conformations derived from RNaseB. We found that conformations with slight perturbations were not reglucosylated by GT. In contrast, a partially structured nonnative form was efficiently recognized by the enzyme. When this form was converted back to a nativelike state, concomitant loss of recognition by GT occurred, reproducing the reglucosylation conditions observed in vivo with isolated components. Moreover, fully unfolded conformers were poorly recognized. The results indicated that GT is able to distinguish between different nonnative conformations with a distinct preference for partially structured conformers. The findings suggest that discrete populations of nonnative conformations are selectively reglucosylated to participate in the calnexin/calreticulin chaperone pathway.  相似文献   

17.
The production of erythrocytes requires the massive synthesis of red cell-specific proteins including hemoglobin, cytoskeletal proteins, as well as membrane glycoproteins glycophorin A (GPA) and anion exchanger 1 (AE1). We found that during the terminal differentiation of human CD34+ erythroid progenitor cells in culture, key components of the endoplasmic reticulum (ER) protein translocation (Sec61α), glycosylation (OST48), and protein folding machinery, chaperones BiP, calreticulin (CRT), and Hsp90 were maintained to allow efficient red cell glycoprotein biosynthesis. Unexpected was the loss of calnexin (CNX), an ER glycoprotein chaperone, and ERp57, a protein-disulfide isomerase, as well as a major decrease of the cytosolic chaperones, Hsc70 and Hsp70, components normally involved in membrane glycoprotein folding and quality control. AE1 can traffic to the cell surface in mouse embryonic fibroblasts completely deficient in CNX or CRT, whereas disruption of the CNX/CRT-glycoprotein interactions in human K562 cells using castanospermine did not affect the cell-surface levels of endogenous GPA or expressed AE1. These results demonstrate that CNX and ERp57 are not required for major glycoprotein biosynthesis during red cell development, in contrast to their role in glycoprotein folding and quality control in other cells.The production of red blood cells involves the terminal differentiation of hematopoietic stem cells in the bone marrow followed by release into the peripheral blood (1, 2). Red blood cells remain in circulation for ∼120 days and require the prior production of abundant red cell-specific proteins including hemoglobin, cytoskeletal proteins, and membrane glycoproteins such as anion exchanger 1 (AE1)3 and glycophorin A (GPA). During differentiation, erythroid progenitor cells undergo extensive remodeling of their cytoskeleton and loss of nuclei and other organelles like the endoplasmic reticulum (ER). AE1 and GPA are known to be synthesized late in differentiation when these key cellular components are lost (3). The efficient biosynthesis of these red cell membrane glycoproteins, however, is expected to require robust ER assembly machinery involving protein translocation, N-glycosylation, and protein folding chaperones.The proper folding of membrane glycoproteins engages the quality control function of cytosolic and ER chaperone proteins (4, 5). Newly synthesized proteins undergo cycles of binding and release with chaperones, minimizing aggregation and facilitating folding. Chaperones also play a role in the retention and degradation of misfolded proteins and in apoptosis (6-8). The membrane-bound ER chaperone calnexin (CNX) and its luminal paralog calreticulin (CRT) interact with folding intermediates via their lectin and protein binding domains, thereby preventing aggregation (9). A wide variety of glycoprotein substrates have been identified, with some binding to one or both chaperones, and both have been shown to be vital in the prevention of aggregation and proper maturation of membrane glycoproteins (9, 10). Disruption of interactions with CNX and CRT can allow misfolded membrane glycoproteins to escape the ER and traffic to the plasma membrane (9).In the present study, we examined the integrity of the ER protein translocation, N-glycosylation, and quality control machinery during the differentiation of human CD34+ erythroid cells in culture. We found that specific components of the protein quality control system were completely lost (CNX and ERp57) or diminished (Hsc70 and Hsp70) before the production of the major glycoproteins, AE1 and GPA, was completed. Components of the protein translocation (Sec61α) and N-glycosylation machinery (OST48) were, however, maintained. Chaperones that play other roles in erythrocyte maturation and survival (CRT, BiP, and Hsp90) were also retained (11). AE1 was found to traffic efficiently to the plasma membrane in mouse embryonic fibroblasts completely lacking the ER chaperone CNX or CRT. Furthermore, disruption of CNX/CRT-glycoprotein interactions in human K562 cells did not affect the cell-surface expression of GPA or AE1. These results demonstrate that CNX and ERp57 are not required for the efficient synthesis and folding of red cell membrane glycoproteins during terminal erythropoiesis. The lack of engagement with the quality control and disulfide folding machinery may allow the more rapid production of red cell glycoproteins late in differentiation, sacrificing quality for quantity.  相似文献   

18.
19.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

20.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号