共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression 总被引:18,自引:0,他引:18
Intermittent hypoxia has been shown to provide myocardial protection against ishemiaJreperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts comparedwith normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reducemyocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl-2/Bax, especially in membrane fraction. 相似文献
2.
二氮嗪预处理上调Bcl-2/Bax蛋白比值减少缺氧复氧所致体外培养的海马神经元凋亡 总被引:14,自引:1,他引:14
线粒体内膜ATP敏感钾通道(mitochondrial ATP-sensitive potassium channel,mitoKATP通道)的激活在药物预处理增强神经元对各种损伤的耐受力过程中发挥着重要作用。神经元内含有丰富的mito KATP,通道,二氮嗪(diazoxide,DZ)为选择性的mitoKATP通道开放剂,本实验探讨了DZ预处理能否减少缺氧复氧所致的海马神经元凋亡,以及DZ如何调控Bcl-2蛋白和Bax蛋白的表达。原代培养9~10d的Sprague-Dawley大鼠海马神经元随机分为5组:对照组、DZ0μmol/L、DZ30μmol/L、DZ100μmol/L和DZ100μmol/L+5-羟癸酸(5-hydroxydecanoate,5-HD)100μmol/L。除对照组外,其他四组神经元白缺氧前3d开始,每天DZ预处理1h,连续3d。体外缺氧4h,于复氧后24h,四唑蓝比色法测定海马神经元存活率,annexin V-FITC流式细胞术测定凋亡率,Western blot法检测Bcl-2和Bax蛋白的表达量。结果显示:与对照组比较,缺氧复氧损伤显著降低海码神经元的存活率,升高凋亡率。与其他浓度比较,100μmol/LDZ预处理使神经元存活率升高约15%,而凋亡率降低约12%:Bcl-2蛋白表达增强约60%,Bax蛋白表达下降近30%。5-HD消除DZ对神经元的保护作用。因此,100μmol/LDZ可通过上调Bcl-2蛋白表达,降低Bax蛋白表达,减少缺氧复氧后海马神经元的凋亡。 相似文献
3.
Aamazadeh Fatemeh Ostadrahimi Alireza Rahbar Saadat Yalda Barar Jaleh 《Molecular biology reports》2020,47(3):1895-1904
Molecular Biology Reports - Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the... 相似文献
4.
Qianqian Zheng Biao Wang Jian Gao Na Xin Wei Wang Xiaowen Song Yue Shao Chenghai Zhao 《Journal of cellular and molecular medicine》2018,22(1):131-140
CD155, one of the nectin‐like molecule family members, is involved in cell adhesion and motility. CD155 is overexpressed in several human cancers, but its role in proliferation and apoptosis of colorectal cancer remains unclear. We found that CD155 was up‐regulated in colorectal cancer tissues. CD155 knockdown via shRNA lentiviruses inhibited colon cancers cell migration and invasion, with a reduction in the expression of FAK, Src and MMP‐2. CD155 down‐regulation also suppressed colon cancer cell proliferation, accompanied by changing expressions of some molecules related to cell cycle. Finally, CD155 knockdown increased the expression ratio between Bax and Bcl‐2, resulting in a significant increase in colon cancer cell apoptosis. Taken together, these results demonstrate that CD155 is involved in not only migration and invasion but also proliferation and survival abilities of colon cancer cells, suggesting that CD155 is one of key molecules promoting the growth and metastasis of colorectal cancer. 相似文献
5.
Nikhil Baban Ghate Bibhabasu Hazra Rhitajit Sarkar Dipankar Chaudhuri Nripendranath Mandal 《In vitro cellular & developmental biology. Animal》2014,50(6):527-537
The objective of the present study was to assess the in vitro anticancer activity of 70% methanolic extract of Terminalia belerica (TBME) against human lung (A549) and human breast (MCF-7) carcinoma and its possible mechanism. TBME showed significant cytotoxicity to both A549 and MCF-7 cells, whereas, no cytotoxicity was found in non-malignant WI-38 cells. Flow cytometric analysis was then performed and 100 μg/ml of TBME was selected as the effective concentration inducing apoptosis in A549 and MCF-7. At this concentration, TBME caused DNA fragmentation pattern of apoptosis. Furthermore, mechanism of apoptosis induction was demonstrated using western blotting and Bax/Bcl-2 ratio in both types of the cells was found increased, which leads to the activation of caspase cascade along with the cleavage of PARP. These results suggested that TBME is able to induce anticancer effects on both lung and breast cancer cell lines through the modulation of Bcl-2 family proteins. 相似文献
6.
NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification. 相似文献
7.
Srivastava M Ahmad N Gupta S Mukhtar H 《The Journal of biological chemistry》2001,276(18):15481-15488
Photodynamic therapy (PDT), a promising treatment modality, is an oxidative stress that induces apoptosis in many cancer cells in vitro and tumors in vivo. Understanding the mechanism(s) involved in PDT-mediated apoptosis may improve its therapeutic efficacy. Although studies suggest the involvement of multiple pathways, the triggering event(s) responsible for PDT-mediated apoptotic response is(are) not clear. To investigate the role of Bcl-2 in PDT-mediated apoptosis, we employed Bcl-2-antisense and -overexpression approaches in two cell types differing in their responses toward PDT apoptosis. In the first approach, we treated radiation-induced fibrosarcoma (RIF 1) cells, which are resistant to silicon phthalocyanine (Pc 4)-PDT apoptosis, with Bcl-2-antisense oligonucleotide. This treatment resulted in sensitization of RIF 1 cells to PDT-mediated apoptosis as demonstrated by i) cleavage of poly(ADP-ribose) polymerase, ii) DNA ladder formation, iii) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and iv) DEVDase activity. This treatment also resulted in oligonucleotide concentration-dependent decrease in cell viability and down-regulation of Bcl-2 protein with a concomitant increase in apoptosis. However, the level of Bax, a pro-apoptotic member of Bcl-2 family, remained unaltered. In the second approach, an overexpression of Bcl-2 in PDT apoptosis-sensitive human epidermoid carcinoma (A431) cells resulted in enhanced apoptosis and up-regulation of Bax following PDT. In both the approaches, the increased Bax/Bcl-2 ratio was associated with an increased apoptotic response of PDT. Our data also demonstrated that PDT results in modulation of other Bcl-2 family members in a way that the overall ratio of pro-apoptotic and anti-apoptotic member proteins favors apoptosis. 相似文献
8.
Most metastatic melanoma patients fail to respond to available therapy, underscoring the need for novel approaches to identify new effective treatments. In this study, we screened 2,000 compounds from the Spectrum Library at a concentration of 1 micromol/L using two chemoresistant melanoma cell lines (M-14 and SK-Mel-19) and a spontaneously immortalized, nontumorigenic melanocyte cell line (melan-a). We identified 10 compounds that inhibited the growth of the melanoma cells yet were largely nontoxic to melanocytes. Strikingly, 4 of the 10 compounds (mebendazole, albendazole, fenbendazole, and oxybendazole) are benzimidazoles, a class of structurally related, tubulin-disrupting drugs. Mebendazole was prioritized to further characterize its mechanism of melanoma growth inhibition based on its favorable pharmacokinetic profile. Our data reveal that mebendazole inhibits melanoma growth with an average IC(50) of 0.32 micromol/L and preferentially induces apoptosis in melanoma cells compared with melanocytes. The intrinsic apoptotic response is mediated through phosphorylation of Bcl-2, which occurs rapidly after treatment with mebendazole in melanoma cells but not in melanocytes. Phosphorylation of Bcl-2 in melanoma cells prevents its interaction with proapoptotic Bax, thereby promoting apoptosis. We further show that mebendazole-resistant melanocytes can be sensitized through reduction of Bcl-2 protein levels, showing the essential role of Bcl-2 in the cellular response to mebendazole-mediated tubulin disruption. Our results suggest that this screening approach is useful for identifying agents that show promise in the treatment of even chemoresistant melanoma and identifies mebendazole as a potent, melanoma-specific cytotoxic agent. 相似文献
9.
Barrasa JI Santiago-Gómez A Olmo N Lizarbe MA Turnay J 《Biochimica et biophysica acta》2012,1823(12):2201-2209
A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels. 相似文献
10.
Overexpression of human GPX1 modifies Bax to Bcl-2 apoptotic ratio in human endothelial cells 总被引:2,自引:0,他引:2
Faucher K Rabinovitch-Chable H Cook-Moreau J Barrière G Sturtz F Rigaud M 《Molecular and cellular biochemistry》2005,277(1-2):81-87
As they scavenge reactive oxygen species, antioxidants were studied for their ability to interfere with apoptotic processes. However, their mechanisms of action remain unclear. In this study, we measured the expression of two Bcl-2 family members, Bax and Bcl-2, in a human endothelial like cell-line overexpressing the organic hydroperoxide-scavenging enzyme glutathione peroxidase (GPX1), in the absence of any apoptotic/oxidant stimulus. ECV304 were stably transfected with the GPX1 cDNA and used for quantification of Bax (pro-apoptotic) and Bcl-2 (antiapoptotic) mRNA and protein levels, by quantitative RT-PCR and Western-blot. We found that, compared to control cells, cells from a clone showing a 13.2 fold increase in GPX1 activity had unchanged mRNA or protein Bcl-2 levels but expressed 42.6% and 46.1% less Bax mRNA and Bax protein respectively. Subsequently to Bax decrease, the Bax/Bcl-2 ratio, reflecting the apoptotic state of the cells, was also lower in cells overexpressing GPX1. Noticeably, the mRNA and the protein level of the cell-cycle protein p53, known to activate Bax expression, was unchanged. Our study showed that overexpressing an antioxidant gene such as GPX1 in endothelial cells is able to change the basal mRNA and protein Bax levels without affecting those of p53 and Bcl-2. This phenomenon could be useful to antiatherogenic therapies which use antioxidants with the aim of protecting the vascular wall against oxidative stress injury. 相似文献
11.
Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio 总被引:12,自引:0,他引:12
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression. 相似文献
12.
Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide 总被引:22,自引:0,他引:22
Recent studies have shown that nitric oxide (NO) donors can trigger apoptosis of neurons, and growth factors such as insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) can protect against NO-induced neuronal cell death. The purpose of this study was to elucidate the possible mechanisms of NO-mediated neuronal apoptosis and the neuroprotective action of these growth factors. Both IGF-1 and bFGF prevented apoptosis induced by NO donors, sodium nitroprusside (SNP) or 3-morpholinosydnonimin (SIN-1) in hippocampal neuronal cultures. Incubation of neurons with SNP induced caspase-3-like activation following downregulation of Bcl-2 and upregulation of Bax protein levels in cultured neurons. Treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by SNP. In addition, treatment of neurons with an inhibitor of caspase-3, Ac-DEVD-CHO, together with SNP did not affect the changes in the protein levels, although it inhibited NO-induced cell death. Pretreatment of cultures with either IGF-1 or bFGF prior to NO exposure inhibited caspase-3-like activation together with the changes in Bcl-2 and Bax protein levels. These results suggest that the changes in Bcl-2 and Bax protein levels followed by caspase-3-like activation are a component in the cascade of NO-induced neuronal apoptosis, and that the neuroprotective actions of IGF-1 and bFGF might be due to inhibition of the changes in the protein levels of the Bcl-2 family. 相似文献
13.
Bcl-2 family gene modulation during spontaneous apoptosis of B-chronic lymphocytic leukemia cells 总被引:4,自引:0,他引:4
Sanz L Garcia-Marco JA Casanova B de La Fuente MT García-Gila M Garcia-Pardo A Silva A 《Biochemical and biophysical research communications》2004,315(3):562-567
Malignant cell accumulation in B-cell chronic lymphocytic leukemia (B-CLL) is primarily caused by defective apoptosis rather than increased proliferation. To further understand the role of Bcl-2 family members, known regulators of apoptosis, in the abnormal B-CLL survival, we have measured their mRNA levels in fresh B-CLL cells and in cultures undergoing spontaneous apoptosis. Using RNA protection assays we found constitutive expression of most bcl-2 members with high levels of bcl2, bcl-w, bad, bak, bax, and the bcl-2/bax ratio, compared to normal PBL. Spontaneous apoptosis of B-CLL cells by in vitro culture resulted in decreased bcl-2, bcl-w, bfl-1, mcl-1, bak, bax, and bcl-2/bax expression. The pro-apoptotic member bik was only expressed in 5/19 cases and was not modulated during apoptosis, suggesting that bik is not involved in this process. Thus, several Bcl-2 family genes are regulated during B-CLL spontaneous apoptosis and their relative levels may contribute to in vivo progression of the disease. 相似文献
14.
Studies of apoptosis in C. elegans have allowed the identification of three genes, ced-3, ced-4 and ced-9. Their products constitute the components of an induction pathway of apoptosis conserved in the nematode and mammals. In Drosophila, homologues have been found for CED-3, CED-4 and CED-9. CED-9 belongs to the Bcl-2 family which includes negative (Bcl-2) and positive (Bax) regulators of apoptosis. The recently discovered Bcl-2 family member named Drob-1 acts as a positive regulator of cell death. To address whether a Bcl-2 anti-apoptotic pathway exists in the fly, we studied the effects of expressing the mammalian genes bcl-2 in Drosophila. In embryos, expression of bcl-2 inhibits developmental and X-ray-induced apoptosis. Expressing bcl-2 or the pro-apoptotic mammalian bax in the developing eye and wing alters these structures, bcl-2 increasing the number of cells, while bax reduces the number of cells. In addition, the functional interaction between Bcl-2 and Bax is conserved. These results indicate that factors necessary for the activity of bcl-2 and bax are present in Drosophila. Therefore, a Bcl-2 pathway for inhibition of cell death may exist in the fly. 相似文献
15.
Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells 总被引:10,自引:0,他引:10
Murphy KM Ranganathan V Farnsworth ML Kavallaris M Lock RB 《Cell death and differentiation》2000,7(1):102-111
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis. 相似文献
16.
It was recently reported that arsenic trioxide (As_2O_3) can induce complete remission in patients with acute promyelocytic leukemia (APL). In this present article, the biological effect of As_2O_3 on human cervical cancer HeLa cells and HeLa cells overexpressing Bcl-2 is studied. By MTT and colony forming ability assays, morphology alteration, flow cytometric analysis, DNA gel electrephoresis and in situ cell death detection (TUNEL), it was found that As_2O_3 inhibited the growth of HeLa cells and induced G2/M arrest and apoptosis of the cells. RT-PCR, Northern blot, Western blot analysis revealed that As_2O_3 induced HeLa cell apoptosis possibly via decreasing the expression of c-myc and viral genes. HeLa cells overexpressing Bcl-2 partly resist As_2O_3 induced apoptosis, which might be relative to preventing the cells from As_2O_3 caused G2/M block, downregulation of c-myc gene expression and inhibition of viral gene expression was also noted, However, it was found that As_2O_3 at a high concentratio 相似文献
17.
Youping Deng Chen Lin Jie Zheng Xiao Liang Jieping Chen Ming Fu Peigen Xiao Min Wu 《中国科学C辑(英文版)》1999,42(6):635-643
It was recently reported that arsenic trioxide (As2O3) can induce complete remission in patients with acute promyelocytic leukemia (APL). In this present article, the biological
effect of (As2O3) on human cervical cancer HeLa cells and HeLa cells overexpressing Bcl-2 is studied. By MTT and colony forming ability assays,
morphology alteration, flow cytometric analysis, DNA gel electrophoresis andin situ cell death detection (TUNEL), it was found that As2O3 inhibited the growth of HeLa cells and induced G2/M arrest and apoptosis of the cells. RT-PCR, Northern blot, Western blot
analysis revealed that As2O3 induced HeLa cell apoptosis possibly via decreasing the expression of c-myc and viral genes. HeLa cells overexpressing Bcl-2
partly resist As2O3 induced apoptosis, which might be relative to preventing the cells from As2O3 caused G2/M block, downregulation of c-myc gene expression and inhibition of viral gene expression was also noted. However,
it was found that As2O3 at a high concentration could also induce apoptosis of HeLa cells overexpressing Bcl-2 possibly mainly via downregulating
Bcl-2 expression and slightly inhibiting viral gene expression. 相似文献
18.
Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion,Bax translocation,and Bax/Bak oligomerization suppressed 总被引:11,自引:0,他引:11
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes. 相似文献
19.
Crawford MJ Krishnamoorthy RR Rudick VL Collier RJ Kapin M Aggarwal BB Al-Ubaidi MR Agarwal N 《Biochemical and biophysical research communications》2001,281(5):1304-1312
We recently showed that photooxidative stress on cultured photoreceptor cells results in down-modulation of NF-kappaB activity which then leads to apoptosis of cultured 661W photoreceptor cells. In an effort to further delineate the mechanism of photoreceptor cell death, we sought to determine the effects of Bcl-2 overexpression on cell survivability. Wild-type 661W cells were transfected with the plasmid construct pSFFV-neo-Bcl-2 and several clones were isolated. All clones demonstrated increased Bcl-2 mRNA and protein levels, with the B4 clone exhibiting the greatest enhancement. On exposure to visible light the B4 cells were protected from undergoing apoptosis when compared with the mock transfected cells, as ascertained by TUNEL apoptosis assay and formazan based estimation of cell viability. The Bcl-2 overexpressing cells also maintained a higher Bcl-2/Bax ratio, suggesting that this ratio is important in protection from photooxidative stress. Electrophoretic mobility shift assays for NF-kappaB demonstrated higher activity in both nuclear and cytosolic fractions of the B4 photoreceptors compared with the 661W wild-type cells at all light exposure time points. Furthermore, the findings of the gel shift assays were further supported by immunocytochemistry for NF-kappaB which revealed that protein levels of the RelA subunit of NF-kappaB were protected in the nucleus as well as in the cytoplasm of Bcl-2 overexpressing B4 cells exposed to light compared to the 661W cells. These results suggest that Bcl-2 overexpression protects NF-kappaB protein levels and activity in the nucleus, indicating that preservation of NF-kappaB binding activity in the nucleus may be essential for photoreceptor cells to survive photooxidative damage induced apoptosis. 相似文献
20.
目的:探讨人参皂甙Rb1、Rg1在肾缺血/再灌注血清诱导HK-2细胞凋亡中对Bol-2、Bax表达的影响。方法:制备家兔肾缺血/再灌注血清(SIR)和对照组血清(SC)用于HK-2细胞培养,TUNEL法检测细胞凋亡。实验分组:对照组、缺血/再灌注组、Rb1干预组、Rg1干预组,培养24h后免疫细胞化学法检测Bcl-2、Bax的表达。结果:与缺血/再灌注组比较,Rb1干预组和Rg1干预组Bax的表达明显下降(P〈0.01),Bcl-2/Bax比值增大。结论:人参皂甙Rb1、Rg1对肾缺血/再灌注血清诱导HK-2细胞凋亡具有保护作用。 相似文献