首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
基因印记是一种表观遗传调控机制,在二倍体哺乳动物的发育过程中,基因印记可以调控来自亲代的等位基因差异表达。非编码RNA是不编码蛋白质的RNA,它在RNA水平调控基因表达。研究表明大多数印记基因中存在长非编码RNA(长度>200nt的非编码RNA)的转录,长非编码RNA主要通过顺式的转录干扰作用来实现基因印记。同时基因印记及其相关的长非编码RNA异常表达与许多先天疾病相关,迄今已发现数十种人类遗传疾病与基因印记有关,而lncRNA引起的基因印记在疾病的发生和治疗中起着重要作用。  相似文献   

2.
真核基因反义RNA研究进展   总被引:1,自引:0,他引:1  
反义RNA是指能与特定mRNA互补的RNA片段。本文介绍了近年来真核基因反义RNA研究的一些进展,包括不同基因反义RNA的作用,反义RNA抑制作用的特点,以及反义RNA的抑制机理。反义RNA对基因表达具有高度专一性的调控作用,因此可利用它研究特定基因在细胞生长、分化中的作用,同时,反义RNA系统也可用于抑制有害基因的表达,从而为治疗提供新的途径。  相似文献   

3.
RNA复制子疫苗及其包装系统   总被引:2,自引:0,他引:2  
RNA复制子疫苗是一种基于RNA的复制子,能够进行自我复制的新型疫苗,保留了病毒的复制酶基因,结构基因由外源基因所代替,复制酶可控制载体RNA在胞质中高水平复制和外源基因高水平的表达。RNA复制子疫苗被包装成病毒样颗粒后,大大提高了RNA复制子的稳定性。近几年来,关于RNA复制子的包装系统发展迅速,并且许多包装系统都获得成功,大大提高了复制子疫苗的生物安全性和外源基因的高效表达性,具有很好的应用前景。  相似文献   

4.
miRNA主要的功能是与靶标miRNA的3′或5′非翻译区甚至CDS区进行不完全不精确的碱基配对,从而抑制信使RNA(miRNA)的翻译或降解miRNA。然而,目前对大多数mi RNA的调节机制及其结合的靶基因知之甚少。基于计算生物学的mi RNA靶基因预测提供了一种有效且经济的分析方法,对目前几个典型的mi RNA靶基因的生物信息学分析方法进行了系统阐述,详细论述了mi RNA靶基因的预测方法和靶基因下游的生物信息学分析,包括mi RNA差异筛选、靶基因预测、靶基因富集分析、mi RNA和靶基因相互作用网络的构建、mi RNA与通路的网络构建等,系统论述了mi RNA差异表达的分析方法和步骤,为实验验证结果提供了可靠的参考方法,为开展mi RNA的功能分析和实验研究提供借鉴。  相似文献   

5.
RNA干扰是真核生物基因转录后水平的一种表达调控机制,它通过内源性或外源性的ds RNA介导细胞内靶标m RNA发生特异性降解或翻译抑制,从分子水平影响靶标基因的表达。该技术不仅广泛用于肿瘤基因结构与功能的探索研究,也为肿瘤基因靶向特异性治疗提供了新的技术手段。本文就RNA干扰的原理和特点,合成方法,以及目前RNA干扰在肿瘤基因研究中的应用方法及情况进行综述。  相似文献   

6.
非编码RNA是一类没有开放阅读框、不能翻译成为蛋自质的RNA分子。在哺乳动物中,它们主要是指微小RNA、小干扰RNA、PIWI互作RNA和其他一些反义转录本等。它们在生物体内广泛存在,通过RNA干扰、基因沉默、基因印迹和DNA甲基化等机制调控着基因的表达。非编码RNA增加了真核细胞调控网络的复杂性,也为科学地解释一些现象提供了新的途径。  相似文献   

7.
竞争性内源RNA(competing endogenous RNA,ce RNA)假说提出了一种RNA在转录后水平调控基因表达的机制,即信使RNA(message RNA,m RNA)、长链非编码RNA(long non-coding RNA,lnc RNA)、假基因(pseudogene)转录物及环状RNA(circular RNA,circ RNA)通过竞争结合相同的微小RNA(micro RNA,mi RNA)来影响靶基因RNA的稳定性或翻译活性,实现转录后水平的基因表达调节。这一全新的基因表达调控机制目前已在肌肉的分化、胚胎干细胞的分化、中脑的发育及癌症的转移等多个研究领域被发现,并且被证实参与多个生物学过程的调控。ce RNA这种以mi RNA为媒介实现RNA与RNA相互调控的机制,使得编码基因和非编码基因在全转录组范围内形成了一个庞大而精细的调控网络,增加了基因调控网络的复杂性。文章就ce RNA的分子类型、ce RNA机制所涉及的生物学功能、影响ce RNA机制的重要因素及ce RNA调控网络预测这几个方面进行综述。  相似文献   

8.
外源RNA对小鼠白蛋白基因表达及DNaseⅠ敏感性的影响   总被引:2,自引:2,他引:2  
兔肝RNA诱导培养的小鼠成纤维细胞 ,大鼠肝RNA注射入小鼠前列腺 ,用免疫组织化学染色检测外源RNA对小鼠白蛋白基因表达的影响 ;不同RNA诱导培养的小鼠成纤维细胞 ,提取细胞核 ,DNaseⅠ消化 ,PCR法扩增小鼠白蛋白基因 ,检测白蛋白基因消化情况。发现外源RNA可促进小鼠白蛋白基因表达并增加该基因DNaseⅠ敏感性  相似文献   

9.
基于甲病毒的RNA复制子疫苗   总被引:1,自引:0,他引:1  
RNA复制子疫苗利用源自病毒能够自主复制的RNA,结构蛋白基因由外源抗原基因取代,保留了非结构蛋白基因,非结构蛋白可控制载体RNA在胞浆中高水平复制和外源基因的高水平表达。RNA复制子疫苗克服了传统疫苗和普通DNA疫苗存在的缺点,具有免疫效果显著、安全性好、应用范围广等优点,具有很好的应用前景。用于RNA复制子疫苗的载体主要源自甲病毒,本文以甲病毒载体为例,简要阐明RNA复制子疫苗的基本原理和特点,并对其应用作一综述。  相似文献   

10.
RNA:诱导基因沉默   总被引:2,自引:0,他引:2  
在生物体中,双链RNA(double-strand RNA,dsRNA)裂解后的小RNA可以诱导细胞质和基因组水平外源基因沉默。所谓基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。小RNA能诱导互补信使RNA在转录后降解。RNA沉默是基因组水平的免疫现象,代表了进化过程中原始的基因组对抗外源基因序列表达的保护机制,在动植物进化中起着重要作用,RNA沉默具有抵抗病毒入侵、抑制转座子活动等作用,并调控蛋白编码基因的表达,具有十分诱人的应用前景。  相似文献   

11.
目的 探讨一组多重耐药肺炎克雷伯菌(MDR-KPN)中获得性耐药相关基因和可移动遗传元件遗传标记的存在状况以及二者的相关性.方法 收集2008年8月至2010年5月浙江省杭州市和湖州市6所医院共47株MDR-KPN,采用聚合酶链反应(PCR)的方法分析74种获得性耐药基因和24种可移动遗传元件遗传标记,并用指标聚类分析(SPSS法)分析获得性耐药相关基因和可移动遗传元件遗传标记的相关性.结果 47株MDR-KPN共检出5种β-内酰胺类获得性耐药基因、6种氨基糖苷类获得性耐药基因、3种喹诺酮类获得性耐药基因、6种其他获得性耐药基因、1种整合子遗传标记、2种转座子遗传标记、4种插入序列遗传标记、2种接合性质粒遗传标记和1种噬菌体原标记;指标聚类分析(SPSS法)将上述阳性检出基因分成A、B两大簇.结论 指标聚类分析提示获得性耐药相关基因和可移动遗传元件密切相关;由Ⅰ类整合子( intI1)、插入序列(IS26、ISEcp1、ISKpn6)、耐药质粒(trbC)介导的TEM-1和KPC是本组菌株的特征.在肺炎克雷伯菌中做指标聚类分析为国内首次报道.  相似文献   

12.
Arber W 《Proteomics》2005,5(9):2280-2284
It is often tacitly assumed that all gene products serve the needs of life functions of the individual carrying the genome. However, a close look at the formation of genetic variations, which are the drivers of biological evolution, reveals a different view. While a majority of the products of genes, such as housekeeping genes and genes essential for each individual, when exposed to particular life conditions respond to the definition given above, other gene products clearly carry out evolutionary functions at the level of populations. Products of these evolution genes act as generators of genetic variations and/or as modulators of the frequency of genetic variation. This is most readily seen with bacterial populations. Many different mechanisms contribute to the occasional, overall formation of genetic variations. These mechanisms can be grouped into three mechanistically and qualitatively different strategies of generating genetic variations. In addition to the activities of evolution genes, specific properties of matter such as tautomery also contribute to the formation of genetic variations. The views that nature cares actively for biological evolution are documented by evidence taken mainly from microbial genetics. Essential elements of the theory of molecular evolution are discussed, as well as the relevance of this theory for higher organisms and its impact on our worldview.  相似文献   

13.
Quantitative trait locus mapping for atherosclerosis susceptibility   总被引:5,自引:0,他引:5  
PURPOSE OF REVIEW: Atherosclerosis is a complex trait with both environmental and genetic aspects. Although some progress has been made in defining genes associated with atherosclerosis in humans, animal models have been useful in learning about pathways and genes involved in atherogenesis. This review describes an unbiased genetic mapping method called quantitative trait locus mapping and progress in using this method to identify genes that alter atherosclerosis susceptibility in mice. RECENT FINDINGS: Approximately 10 well defined genetic loci have been described that are associated with lesion severity in diet-induced or gene knockout mouse models of atherosclerosis. Recently, two of these genetic loci were narrowed considerably by analysis of genetic recombinants within these loci. In addition, a computational method to discover quantitative trait loci has been applied to atherosclerosis. However, none of the genes responsible for these atherosclerosis quantitative trait loci has been definitively identified. The recent completion of the mouse draft genome should facilitate the task of identifying these genes. SUMMARY: Quantitative trait locus mapping studies in mouse models of atherosclerosis have defined genetic regions that alter lesion severity. The identification of the responsible genes may lead to insights into the pathogenesis of atherosclerosis as well as to candidates for human genetic association studies.  相似文献   

14.
The sequencing of the human and the mouse genomes has shown that the chromosomes of these two species contain approximately 30,000 genes. The biological systems that can be studied in an individual or in a tissue result from complex interactions within this multitude of genes. Before describing these interactions, it is necessary to understand the function of each gene. In the mouse, congenic strains are developed to introduce a chromosomal segment in a given inbred genetic background. One can then compare the biological effects of different alleles at the same locus in the same genetic background or the effect of a given allele in different genetic backgrounds. One can also introduce into different congenic strains with the same genetic background genes which control a complex genetic trait, then combine these genes by appropriate crosses to study their interactions. Although the chromosomal segment transferred into a congenic strain usually contains up to several hundreds of genes, molecular markers can be used to reduce this number as well as the number of crosses required for the development of congenic strains.  相似文献   

15.
Genetic modules and networks for behavior: lessons from Drosophila   总被引:3,自引:0,他引:3  
Behaviors are quantitative traits determined through actions of multiple genes and subject to genome-environment interactions. Early studies concentrated on analyzing the effects of single genes on behaviors, often generating views of simplified linear genetic pathways. The genome era has generated a profound paradigm shift enabling us to identify all the genes that contribute to expression of a behavioral phenotype, to investigate how they are organized as functional ensembles and to begin to identify polymorphisms that contribute to phenotypic variation and are targets for natural selection. Recent studies show that the genetic architecture of behavior is determined by dynamic and plastic modular networks of pleiotropic genes and that the behavioral phenotype manifests itself as an emergent property of such networks. Such networks are exquisitely sensitive to genetic background and sex effects. This review describes how Drosophila can serve as a model for uncovering fundamental principles of the genetic architecture of behavior.  相似文献   

16.
17.
Weeden NF 《Annals of botany》2007,100(5):1017-1025
BACKGROUND AND AIMS: The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. METHODS: Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. KEY RESULTS: A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. CONCLUSIONS: Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to 'domestication syndrome' in the Fabaceae.  相似文献   

18.
Role of cryptic genes in microbial evolution   总被引:24,自引:1,他引:23  
Cryptic genes are phenotypically silent DNA sequences, not normally expressed during the life cycle of an individual. They may, however, be activated in a few individuals of a large population by mutation, recombination, insertion elements, or other genetic mechanisms. A consideration of the microbial literature concerning biochemical evolution, physiology, and taxonomy provides the basis for a hypothesis of microbial adaptation and evolution by mutational activation of cryptic genes. Evidence is presented, and a mathematical model is derived, indicating that powerful and biologically important mechanisms exist to prevent the loss of cryptic genes. We propose that cryptic genes persist as a vital element of the genetic repertoire, ready for recall by mutational activation in future generations. Cryptic genes provide a versatile endogenous genetic reservoir that enhances the adaptive potential of a species by a mechanism that is independent of genetic exchange.   相似文献   

19.
On the basis of established knowledge of microbial genetics one can distinguish three major natural strategies in the spontaneous generation of genetic variations in bacteria. These strategies are: (1) small local changes in the nucleotide sequence of the genome, (2) intragenomic reshuffling of segments of genomic sequences and (3) the acquisition of DNA sequences from another organism. The three general strategies differ in the quality of their contribution to microbial evolution. Besides a number of non-genetic factors, various specific gene products are involved in the generation of genetic variation and in the modulation of the frequency of genetic variation. The underlying genes are called evolution genes. They act for the benefit of the biological evolution of populations as opposed to the action of housekeeping genes and accessory genes which are for the benefit of individuals. Examples of evolution genes acting as variation generators are found in the transposition of mobile genetic elements and in so-called site-specific recombination systems. DNA repair systems and restriction-modification systems are examples of modulators of the frequency of genetic variation. The involvement of bacterial viruses and of plasmids in DNA reshuffling and in horizontal gene transfer is a hint for their evolutionary functions. Evolution genes are thought to undergo biological evolution themselves, but natural selection for their functions is indirect, at the level of populations, and is called second-order selection. In spite of an involvement of gene products in the generation of genetic variations, evolution genes do not programmatically direct evolution towards a specific goal. Rather, a steady interplay between natural selection and mixed populations of genetic variants gives microbial evolution its direction.  相似文献   

20.
Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans‐acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis‐regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号