首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular cloning of genomic sequences altered in cancer cells is believed to lead to the identification of new genes involved in the initiation and progression of the malignant phenotype. DNA amplification is a frequent molecular alteration in tumor cells, and is a mode of proto-oncogene activation. The cytologic manifestation of this phenomenon is the appearance of chromosomal homogeneously staining regions (HSRs) or double minute bodies (DMs). The gastric carcinoma cell line KATO III is characterized by a large HSR on chromosome 11. In-gel renaturation analysis confirmed the amplification of DNA sequences in this cell line, yet none of 42 proto-oncogenes that we tested is amplified in KATO III DNA. We employed the phenol-enhanced reassociation technique (PERT) to isolate 21 random DNA fragments from the amplified domain, and used 6 of them to further clone some 150 kb from that genomic region. While in situ hybridization performed with some of these sequences indicated that in KATO III they are indeed amplified within the HSR on chromosome 11, somatic cell hybrid analysis and in situ hybridization to normal lymphocyte chromosomes showed that they are derived from chromosome 10, band q26. The same sequences were found to be amplified in another gastric carcinoma cell line, SNU-16, which contains DMs, but were not amplified in other 70 cell lines representing a wide variety of human neoplasms. One of these sequences was highly expressed in both KATO III and SNU-16. Thus, the cloned sequences supply a starting point for identification of novel genes which might be involved in the pathogenesis of gastric cancers, and are located in a relatively unexplored domain of the human genome.  相似文献   

2.
The human HL-60 acute leukemia cell line harbors double minutes (dmins) during early passages. During its continuous culture for a long term, a single marker chromosome with a homogeneously staining region (HSR) replaces the dmins. The both structures harbor amplified c-MYC sequences. Here we ask how the cellular phenotype is altered by the c-MYC integration into a HSR. Treatment with dimethyl sulfoxide induces granulocytic differentiation in the both types of cells. In contrast to HL-60/dmin cells, however, no apoptosis followed differentiation and the differentiation phenotype was reverted upon withdrawal of the drug in HL-60/HSR cells. Terminal differentiation and loss of DNase I hypersensitivity sites at c-MYC P2 promoter appeared to be unlinked in the both types of cells. By comparison with HL-60/dmin cells, we conclude that the integration into a HSR of an extrachromosomal gene(s) but not c-MYC likely leads to the loss of irreversibility of the differentiation phenotype.  相似文献   

3.
Two independently selected series of rat hepatoma cell lines resistant to the drug deoxycoformycin (dCF) were analyzed karyotypically. Several forms of homogeneously staining regions (HSRs) were present on metaphase chromosomes of these cells. In some instances HSRs comprised nearly an entire chromosome, which are among the largest chromosomes in the karyotype. Stable resistance to dCF is acquired in rat cells by overproduction of the enzyme adenosine deaminase (ADA) as a result of amplification of ADA gene sequences. We have localized the amplified ADA gene sequences to HSRs on metaphase chromosomes from both series of dCF-resistant cell lines by in situ hybridization. Based upon the number of ADA gene sequences present and the lengths of the HSRs, we have estimated the size of the amplified unit to range from 450 to 1,000 kb.  相似文献   

4.
5.
Large inverted duplications are associated with gene amplification   总被引:40,自引:0,他引:40  
M Ford  M Fried 《Cell》1986,45(3):425-430
Amplified DNA can be found in arrays of large repeated units, with each repeat unit containing a marker gene and surrounding DNA sequences. Amplified DNA sequences from established cell lines were assessed for the presence of repeat units in the form of inverted duplications. Inverted duplicated DNA was detected by virtue of its concentration-independent resistance to S1 hydrolysis after denaturation and rapid renaturation. Using this assay, inverted duplications were detected in amplified DNA (both DM and HSR configurations) containing the myc gene (16-50 copies/cell) in four human tumor cell lines and in amplified DNA containing the CAD gene (30-200 copies/cell) in three PALA-resistant BHK cell lines. The widespread association of inverted duplications with amplified DNA must bear on the amplification mechanism.  相似文献   

6.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLHL. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT 116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

7.
8.
We have investigated the replication pattern of a large, homogenously staining chromosome region (HSR) in two antifolate-resistant Chinese hamster cell lines. This region is believed to be the location of an amplified genetic sequence which includes at least the gene coding for dihydrofolate reductase and which may be present in as many as 200 copies. It is shown that the HSR in both cell lines is among the first chromosome regions to begin DNA synthesis after reversal of an early G1 block. In cells synchronized in the S period with hydroxyurea, it is also clear that the HSR in both cell lines begins replication at many sites within its length in early S. The replicons comprising the HSR therefore may respond to a common initiation signal in early S. In one cell line (A3), replication of the HSR requires, at most, 3 hours of a 7-hour S period; in a second line (MQ19), replication proceeds for approximately 5 hours. In neither line does replication of the HSR occur concomitantly with synthesis of characteristic late replicating regions. These results were confirmed in exponential cultures using a retroactive labeling technique. The significance of these findings is discussed with reference to the possible origin and arrangement of the amplified sequence in these two cell lines.  相似文献   

9.
Normal and mutant human adenosine deaminase genes   总被引:2,自引:0,他引:2  
  相似文献   

10.
The DNA sequence organization of a homogeneously staining region (HSR) in the germ line of Mus musculus was studied with DNA clones generated by microdissection and microcloning. Six HSR-derived microclones were selected and characterized by Southern blot hybridizations. Four represented single-copy mouse DNA sequences. They were amplified in the HSR as fragments co-migrating with the respective normal mouse sequence and as additional fragments of different mobilities. The copy number of co-migrating fragments was approximately 16 for each of the four sequences but the number of rearranged fragments varied. Two microclones contained DNA sequences not detectable in normal mouse genomes but present, and one of them amplified, in the HSR. The observations suggest that the HSR developed from a part of the mouse genome by alternating replication and rearrangement events, with a specific integration of putative foreign DNA sequences.  相似文献   

11.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

12.
An adenosine deaminase (ADA;EC 3.5.4.4)-deficient B lymphoblastoid cell line BAD05 derived from a Japanese patient with severe combined immunodeficiency was characterized. As previously reported, one allele of BAD05 expresses undetectable ADA mRNA, and the other allele produces an aberrant mRNA without exon 7. Genomic ADA DNA of BAD05 spanning from a portion of exon 6 to a portion of exon 8 was amplified by PCR. The amplified fragments were cloned into a vector, and 8 clones were isolated and sequenced. The analytical result showed a single base change of G to A at the invariant 5′ GT of intron 7 of ADA gene in one allele of BAD05, which accounts for the elimination of exon 7 during splicing. © 1993 Wiley-Liss, Inc.  相似文献   

13.
JEG-3 is a human choriocarcinoma cell line characterized by low levels of adenosine deaminase expression. For the purpose of studying adenosine deaminase gene regulation in the JEG-3 cells, we attempted to select variant cells having increased adenosine deaminase expression. This was accomplished by selecting cells for resistance to the cytotoxic adenosine analogs 9-beta-D-arabinofuranosyl adenine (ara-A) or 9-beta-D-xylofuranosyl adenine (xyl-A), both of which could presumably be detoxified by the action of adenosine deaminase. Single step high dose selection was ineffective in obtaining cells with increased adenosine deaminase. However, multistep selection using either ara-A or xyl-A resulted in cell populations with increased adenosine deaminase activity. Removal of selective pressure resulted in decreased adenosine deaminase levels. Subclones of xyl-A-resistant cells belonged to one of three phenotypic classes characterized by either elevated adenosine deaminase levels, decreased adenosine kinase levels, or both of these features. One subclone (A3-1A7) with unaltered adenosine kinase expression showed a 20-fold increase in adenosine deaminase expression. Further selection of this subclone for increasing xyl-A resistance resulted in an additional 2-fold increase in adenosine deaminase expression, followed by loss of adenosine kinase expression. These adenosine kinase-deficient cells showed no subsequent increase in adenosine deaminase expression in response to further xyl-A selection pressure. These results confirmed that xyl-A toxicity was mediated through its phosphorylated form and indicated that resistance may result from increased adenosine deaminase levels and/or adenosine kinase deficiency. The increased adenosine deaminase expression of the A3-1A7 subclone was exclusively in the ADA 2 allelic form. However, cell fusion experiments between A3-1A7 cells and mouse C1-1D cells established the existence of functional copies of both ADA 1 and ADA 2 allelic genes in the A3-1A7 cells. The increased expression of only one of the two functional ADA alleles, the requirement for a stepwise selection protocol to obtain cells with increased adenosine deaminase, and the instability of the adenosine deaminase phenotype in the absence of selective pressure suggest that the alteration of adenosine deaminase phenotype in the drug-resistant cells was the result of adenosine deaminase gene amplification.  相似文献   

14.
Considerable work with DNA amplification has been carried out in the murine SEWA ascites tumor cell system. In SEWA cells there is 'spontaneous' amplification of the c-myc oncogene, and transitions between different cytogenetic expressions of gene amplification such as DM (double minutes), CM (C-bandless chromosomes) and HSR (homogeneously staining regions) of the amplified DNA have been recorded during serial in vivo transplantations. In SEWA cells it has also been shown that the c-myc-containing DM will he lost under in vitro conditions, but are rapidly recovered if the cells are reinjected into animals. Additional gene amplification has been superimposed on the c-myc amplification in SEWA cells by stepwise selection in vitro, leading to resistance to different drugs, such as methotrexate, actinomycin D, colcemid and vincristine. Cytogenetically, DNA amplification is multifaceted and, in addition to the structures mentioned, it may also take the form of CB (chromatin bodies), which have been shown to be the carriers of resistance genes in hybrids between multidrug-resistant SEWA cells and Chinese hamster CHO cells. In most instances, DM are noncentromeric and distributed by a 'hitch-hiking' mechanism at mitosis; in one colcemid-resistant SEWA line, however, we have shown that the DM carry active centromeres. The molecular mechanism behind DNA amplification appears to be complex. We have shown that in four independently derived multidrug-resistant SEWA sublines the amplicons resided on circular molecules which were about 2500 kb long and carried at least five genes, including the three mouse mdr genes. Within the circles the DNA was unrearranged compared to the organization of the DNA in sensitive cells.  相似文献   

15.
Isolation of cDNA clones for human adenosine deaminase   总被引:14,自引:0,他引:14  
Clones encoding human adenosine deaminase (ADA) were isolated from a cDNA library made from the lymphoblastoid cell line MOLT-4. The isolation procedure was based on the selection of clones hybridizing with a radioactive probe complementary to an RNA preparation, which had been highly enriched in ADA-specific mRNA. The latter RNA preparation was obtained by size-fractionating MOLT-4 RNA and selecting fractions that were translatable into ADA. The assay for the presence of ADA in the in vitro translation products, was based on immunoprecipitation with a specific anti-ADA serum. The antiserum used was shown to precipitate a 42-kDal protein with the properties of ADA. Positive clones were further screened by means of hybrid-released in vitro translation assays. Two clones were obtained which were able to select mRNA that could be translated into a 42-kDal protein immunoprecipitable with the ADA-antiserum. By use of Southern blots containing DNA from somatic cell hybrids, one of these ADA cDNA clones was assigned to the human chromosome 20 known to contain the ADA gene.  相似文献   

16.
DNA amplification is associated with genomic instability, the main characteristic of cancer cells, and it frequently involves protooncogenes. Double minute chromosomes (DM) and homogeneously stained regions (HSR) are cytological manifestations of DNA amplification. Gain of chromosome 19 is a recurrent alteration in mouse hepatocellular carcinoma (HCC). In one tumor cell line established from HCC developed in myc transgenic mice, DM derived from chromosome 19 were identified by spectral karyotyping and confirmed by fluorescence in situ hybridization (FISH). A probe generated by PCR from microdissected DM was localized by FISH on normal and HCC-derived cell lines on DM and chromosome 19 at two sites separated by several medium size G-bands. This organization of DM containing amplified sequences from separate loci of the same chromosome, indicates a complex mechanism of DNA amplification, possibly involving more than one gene. DM or HSR were not previously identified in mouse HCC and adult human HCC. The recognition of these loci could lead to the cloning of new genes or identification of known genes important in development or progression of HCC.  相似文献   

17.
The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.  相似文献   

18.
We have established long term cell lines from a patient with adenosine deaminase (ADA)-deficient severe combined immunodeficiency by stimulation of blood and bone marrow cells with PHA and IL-2 followed by transformation of the activated cells with the human retrovirus HTLV-I. Despite the absence of detectable T cells in the patients blood, cell lines grew that carried the phenotype of mature activated T cells. TJF-2, the line established from blood, was characterized in detail. The concentration of ADA in TJF-2 cells was less than 1% of normal (3.2 U vs 413.0 U). Studies with pharmacologic inhibitors of ADA suggest that the residual adenosine deaminating activity of TJF-2 is from an enzyme distinct from true ADA, a nonspecific aminohydrolyase. Growth of TJF-2 cells was hypersensitive to inhibition by 2'-deoxyadenosine compared to normal T cells (ID50, 55 microM vs greater than 1000 microM). Analysis of 2'-deoxyadenosine-challenged cells showed that TJF-2 cells accumulated significant levels of deoxyadenosine triphosphate, whereas normal T cells did not unless they were also incubated with the ADA inhibitor deoxycoformycin. Southern and Northern blot analysis of these cells revealed a grossly intact ADA gene that produced a normal size ADA mRNA. Yet, despite ADA deficiency, cells of the TJF-2 line were otherwise indistinguishable from HTLV-I-transformed T cells derived from normal donors with respect to dependence on exogenous IL-2 for growth, clonal rearrangement patterns of TCR beta-chain genes, response to PHA, and rapid restoration of cellular volume after hypotonic challenge. The TJF-2 line thus represents a unique HTLV-I-transformed human T cell line exhibiting ADA deficiency and its expected metabolic consequences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号