首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Complementary DNA (cDNA) microarrays are a well established technology for studying gene expression. A microarray image is obtained by laser scanning a hybridized cDNA microarray, which consists of thousands of spots representing chains of cDNA sequences, arranged in a two-dimensional array. The separation of the spots into distinct cells is widely known as microarray image gridding.  相似文献   

2.
基因芯片与植物基因差异表达分析   总被引:5,自引:0,他引:5  
李同祥  王进科 《植物研究》2002,22(3):310-313
基因芯片为研究植物不同个体或物种之间以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异、某一性状多基因的协同作用,寻找和定位新的目的基因等方面带来了革命性的变革。与传统研究基因差异表达的方法相比,它具有微型化、用材少、快速、准确、灵敏度能高基、在因同等一研究方面已取得了显著的成绩,如拟南芥、酵母、水稻等。  相似文献   

3.
基因芯片又称为DNA微阵列,是指将大量核酸片段以预先设计的方式固定在载体上组成密集分子阵列,与荧光素或其他方式标记的样品进行杂交,通过检测杂交信号的强弱来判断样品中有无靶分子以及对靶分子进行定量,是一种研究生物大分子功能的新技术。在衣原体研究方面,基因芯片主要应用于衣原体的检测与分型、感染机制的研究、特定基因作用分析、毒力及耐药基因的筛选等。  相似文献   

4.
We developed a new platform for genome-wide gene expression analysis in any eukaryotic organism, which we called SuperSAGE array. The SuperSAGE array is a microarray onto which 26-bp oligonucleotides corresponding to SuperSAGE tag sequences are directly synthesized. A SuperSAGE array combines the advantages of the highly quantitative SuperSAGE expression analysis with the high-throughput microarray technology. We demonstrated highly reproducible gene expression profiling by the SuperSAGE array for 1,000 genes (tags) in rice. We also applied this technology to the detailed study of expressed genes identified by SuperSAGE in Nicotiana benthamiana, an organism for which sufficient genome sequence information is not available. We propose that the SuperSAGE array system represents a new paradigm for microarray construction, as no genomic or cDNA sequence data are required for its preparation.  相似文献   

5.
Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT‘. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.  相似文献   

6.
We have developed a new DNA chip whose substrate has a unique minute columnar array structure made of plastic. The DNA chip exhibits ultrahigh sensitivity, up to 100-fold higher than that of reference DNA chips, which makes it possible to monitor gene expression profiles even with very small amounts of RNA (0.1-0.01 microg of total RNA) without amplification. Differential expression ratios obtained with the new DNA chip were validated against those obtained with quantitative real-time PCR assays. This novel microarray technology would be a powerful tool for monitoring gene expression profiles, especially for clinical diagnosis.  相似文献   

7.
基因芯片技术及应用研究进展   总被引:19,自引:0,他引:19  
采用高速打印或光刻合成技术可在硅片、玻璃或尼龙膜上制造DNA微阵列。样品DNA/RNA通过PCR扩增、体外转录等技术掺入荧光标记分子,与微阵列杂交后通过荧光扫描仪器扫描及计算机分析即可获得样品中大量基因序列及表达的信息。该技术可应用于高通量基因表达平行分析、大规模基因发现及序列分析、基因多态性分析和基因组研究等 。  相似文献   

8.
Cheng C  Kimmel R  Neiman P  Zhao LP 《Genomics》2003,82(2):122-129
cDNA microarray technology has been applied to the detection of DNA copy-number changes in malignant tumors. Test and control genomic DNA samples are differentially labeled and cohybridized to a spotted cDNA microarray. The ratio of test to control fluorescence intensities for each spot reflects relative gene copy number. The low signal-to-noise ratios of this assay and the variable levels of gene amplification and deletion among tumors hamper the detection of deviations from the diploid complement. We describe a regression-based statistical method to test for altered copy number on each gene and apply the technique to copy-number profiles in 10 thyroid tumors. We show that a novel transformation of fluorescence ratios into array rank order efficiently normalizes the heterogeneity among copy-number profiles and improves the reproducibility of the results. Array rank order regression analysis enhances the detection of consistent changes in gene copy number in solid tumors by cDNA microarray-based comparative genome hybridization.  相似文献   

9.
This review describes the current methods used to profile gene expression. These methods include microarrays, spotted arrays, serial analysis of gene expression (SAGE), and massive parallel signature sequencing (MPSS). Methodological and statistical problems in interpreting microarray and spotted array experiments are also discussed. Methods and formats such as minimum information about microarray experiments (MIAME) needed to share gene expression data are described. The last part of the review provides an overview of the application of gene-expression profiling technology to substance abuse research and discusses future directions.  相似文献   

10.
Toxicogenomics represents the merging of toxicology with genomics and bioinformatics to investigate biological functions of genome in response to environmental contaminants. Aquatic species have traditionally been used as models in toxicology to characterize the actions of environmental stresses. Recent completion of the DNA sequencing for several fish species has spurred the development of DNA microarrays allowing investigators access to toxicogenomic approaches. However, since microarray technology is thus far limited to only a few aquatic species and derivation of biological meaning from microarray data is highly dependent on statistical arguments, the full potential of microarray in aquatic species research has yet to be realized. Herein we review some of the issues related to construction, probe design, statistical and bioinformatical data analyses, and current applications of DNA microarrays. As a model a recently developed medaka (Oryzias latipes) oligonucleotide microarray was described to highlight some of the issues related to array technology and its application in aquatic species exposed to hypoxia. Although there are known non-biological variations present in microarray data, it remains unquestionable that array technology will have a great impact on aquatic toxicology. Microarray applications in aquatic toxicogenomics will range from the discovery of diagnostic biomarkers, to establishment of stress-specific signatures and molecular pathways hallmarking the adaptation to new environmental conditions.  相似文献   

11.
基因芯片又称DNA微阵列,分为cDNA微阵列和寡聚核苷酸微阵列。DNA微阵列技术是探索基因组功能的一种强有力工具。扼要介绍基因芯片、表达谱芯片技术和原理,以及基因芯片技术在肿瘤基因组学中的应用。  相似文献   

12.
Uher F 《Magyar onkologia》2001,45(1):59-66
As the Human Genome Project hurtles towards completion, DNA microarray technology offers the potential to open wide new windows into the study of genome complexity. DNA chips can be used for many different purposes, most prominently to measure levels of gene expression (messenger RNA abundance) for tens of thousands of genes simultaneously. But how much of this data is useful and is some superfluous? Can array data be used to identify a handful of critical genes that will lead to a more detailed taxonomy of haematological malignancies and can this or similar array data be used to predict clinical outcome? It is still too early to predict what the ultimate impact of DNA chips will be on our understanding of cancer biology. There are many critically important questions about this new field that are yet unaddressed. By the publication of this article, it is hoped that the technology of DNA chips will be opened up and demystified, and that additional opportunities for creative exploration will be catalysed.  相似文献   

13.
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.  相似文献   

14.
To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65 degrees C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r(2) = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity.  相似文献   

15.
乳酸菌基因芯片应用研究进展   总被引:1,自引:0,他引:1  
基因芯片技术是上世纪90年代兴起的一种对成百上千甚至上万个基因同时进行检测的新技术,具有高通量、并行化的特点,广泛应用于基因表达谱测定、基因功能预测、基因突变检测和多态性分析等方面。多种乳酸菌基因组全序列以及其大量EST、16S rDNA、16S-23S基因间区和功能基因序列测定的完成,有力地推动了基因芯片技术在乳酸菌研究中的应用。介绍了基因芯片的基本原理及乳酸菌基因芯片在基因表达、种属鉴定等研究中的应用进展,以期更好地利用和开发乳酸菌基因芯片。  相似文献   

16.
Factors influencing cDNA microarray hybridization on silylated glass slides   总被引:2,自引:0,他引:2  
cDNA microarray technology is becoming the technique of choice for studying gene expression and gene expression patterns. Although experimental protocols are available, only limited methodological information on microarray manufacture, hybridization, and signal interpretation has been published. The aim of this paper is to provide more insight into the practical aspects of microarray construction and hybridization. The influence of the size, composition, and concentration of the spotted DNA fragments on the final hybridization signal and the effect of hybridization volume, sample concentration, and sample depletion have been tested and are discussed.  相似文献   

17.
We have constructed a DNA microarray to monitor expression of predicted genes in Drosophila. By using homotypic hybridizations, we show that the array performs reproducibly, that dye effects are minimal, and that array results agree with systematic northern blotting. The array gene list has been extensively annotated and linked-out to other databases. Incyte and the NIH have made the platform available to the community via academic microarray facilities selected by an NIH committee.  相似文献   

18.
19.
Aims:  In order to improve the diagnosis of Bacillus anthracis in environmental samples, we established a DNA microarray based on the ArrayTube technology of Clondiag.
Methods and Results:  Total DNA of a bacterial colony is randomly biotinylated and hybridized to the array. The probes on the array target the virulence genes, the genomic marker gene rpoB , as well as the selective 16S rDNA sequence regions of B. anthracis , of the Bacillus cereus group and of Bacillus subtilis . Eight B. anthracis reference strains were tested and correctly identified. Among the analysed environmental Bacillus isolates, no virulent B. anthracis strain was detected.
Conclusions:  This array clearly differentiates B. anthracis from members of the B. cereus group and other Bacillus species in environmental samples by chromosomal ( rpoB ) and plasmid markers. Additionally, recognition of B. cereus strains harbouring the toxin genes or atypical B. anthracis strains that have lost the virulence plasmids is feasible.
Significance and Impact of the Study:  The array is applicable to the complex diagnostics for B. anthracis detection in environmental samples. Because of low costs, high security and easy handling, the microarray is applicable to routine diagnostics.  相似文献   

20.
Mao X  Young BD  Lu YJ 《Current Genomics》2007,8(4):219-228
The development of microarray technology has had a significant impact on the genetic analysis of human disease. The recently developed single nucleotide polymorphism (SNP) array can be used to measure both DNA polymorphism and dosage changes. Our laboratory has applied SNP microarray analysis to uncover frequent uniparental disomies and sub-microscopic genomic copy number gains and losses in different cancers. This review will focus on the wide range of applications of SNP microarray analysis to cancer research. SNP array genotyping can determine loss of heterozygosity, genomic copy number changes and DNA methylation alterations of cancer cells. The same technology can also be used to investigate allelic association in cancers. Therefore, it can be applied to the identification of cancer predisposition genes, oncogenes and tumor suppressor genes in specific types of tumors. As a consequence, they have potential in cancer risk assessment, diagnosis, prognosis and treatment selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号