首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed dispersal is a crucial process for the dynamics and maintenance of plant populations. Free-ranging animals are effective dispersal vectors because they can move between similar habitats and transport seeds into favourable environments. Dung samples from two species of common free-ranging mammals—deer and wild boar—were used to study endozoochorous dispersal of seeds in a military training area in western Bohemia. The area was abandoned after WWII, and the military training area was established in 1953. The vegetation consists of shrublands and dry grasslands. Data on the local species pool of grassland herbs and forbs were collected to compare the characteristics of dispersed versus non-dispersed plants. Deer and wild boar dispersed 84 plant species; however, species composition of seedlings emerging from dung samples showed significant differences between dispersal vectors and notable change across the growing season. 80% of all seedlings extracted from the dung samples belonged to stinging nettle, Urtica dioica. From trait analyses, seeds of endozoochorous plants had a higher longevity index in the soil seed bank than non-endozoochorous plants and more often possessed a mucilaginous surface. Our results show that deer and boar are successful, though not substitutable dispersers.  相似文献   

2.
We investigated seed dispersal by two sympatric mustelid species, the Japanese marten (Martes melampus) and Japanese weasel (Mustela itatsi), along an intercity forest path in western Tokyo, central Japan, from Jul 2007 to Jul 2008. We aimed to investigate the effect of food/habitat preference of these mustelids (martens are semi-arboreal frugivores while weasels are terrestrial carnivores) on their seed dispersal characteristics, which determine their efficacy as seed dispersers. In total, we analyzed 478 fecal samples collected from the two mustelids (Nmarten = 381, Nweasel = 97). The proportions of feces containing seeds for martens and weasels were 81.4% and 55.7%, respectively. The number of plant species whose seeds were found within the feces were 28 and 17, respectively. Almost all seeds within feces of both mustelids were intact. The number of plant species whose seeds were found within a single fecal sample ranged from one to four, but no significant difference was detected between the two mustelids. However, marten feces contained a significantly greater number of seeds of most plant species as well as total number of seeds than did weasel feces. The numbers of plant species and seeds represented in marten feces varied seasonally, but those represented in weasel feces did not. Our findings suggest the possibility that both mustelids act in some ways as seed dispersers, although martens seem to disperse a greater diversity and total amount of seeds.  相似文献   

3.
4.
Journal of Mathematical Biology - In many cases, the motility of species in a certain region can depend on the conditions of the local habitat, such as the availability of food and other resources...  相似文献   

5.
Endozoochrous seed dispersal by herbivorous mammals has been verified repeatedly and its possible influence on the structure and function of herbaceous communities has been suggested. Quantitative studies, however, are lacking in the field of seed dispersal via the dung of herbivore guilds in little-altered environments. The present paper analyses seed dispersal via rabbit, fallow deer, red deer and cow dung in a Mediterranean dehesa (open woodland used for hunting and ranching) during the seeding season. Dung seed content was determined by the glasshouse cultivation of eight dung samples from each herbivore, collected fortnightly between February and August. The four herbivores disperse many seeds (spring averages are 6–15 seeds per gram of dry dung and maxima of 25–70) from a large number of species (totals between 52 and 78). Dispersal seems to be mainly determined by seed production of the plant comminity. This is reflected in (i) the dissemination of a high percentage of the species present in the dehesa, (ii) great seasonal variability, related to seed production, in the amount of seeds and number of species dispersed, and (iii) a high semi-quantitative similarity of seed content in the four types of herbivore dung throughout the year. There is also important quantitative variation that depends on animal traits and feeding habits. These results and the characteristics of species found in dung suggest the adaptation of plant species to the dispersal of their seeds via herbivore gut. This process may well have profound implications for vegetation dynamics and the evolution of plant traits.  相似文献   

6.
Bruun HH  Lundgren R  Philipp M 《Oecologia》2008,155(1):101-110
The potential contribution of vertebrate-mediated seed rain to the maintenance of plant community richness in a High Arctic ecosystem was investigated. We analyzed viable seed content in dung of the four numerically most important terrestrial vertebrates in Northeast Greenland – muskox (Ovibos moschatus), barnacle goose (Branta leucopsis), Arctic fox (Alopex lagopus) and Arctic hare (Lepus arcticus). High numbers of plant propagules were found in the dung of muskox and barnacle goose. Seeds of many plant species were found in the faeces of one vertebrate species only. Propagule composition in barnacle goose droppings was relatively uniform over samples, with a high abundance of the nutritious bulbils of Polygonum viviparum (Bistorta vivipara), suggesting that geese have a narrow habitat preference and feed selectively. Propagule composition in muskox dung was diverse and heterogeneous among samples, suggesting a generalist approach in terms of food selection and the haphazard ingestion of plant propagules with foliage. The species composition of plant propagules in dung samples was different from that of the receiving plant communities (in terms of the Sørensen and Czekanowski dissimilarity indices), and dung deposition, especially by muskox, often brought new species to the receiving community. The results suggest that endozoochorous propagule dispersal in the Arctic has a great potential in the generation and maintenance of local species richness, albeit being little specialized. It is further suggested that endozoochory is an important means of long-distance dispersal and, thereby, of plant migration in response to climate change.  相似文献   

7.
Summary Evolutionary stable dispersal and wing muscle histolysis strategies are studied in the waterstriderGerris thoracicus. These strategies relate to spreading reproductive risk. Overwintering individuals have the choice of dispersing to either a brackish sea bay or a rock pool habitat. The former is reproductively more favorable than the latter during warm dry years and less favorable during cool wet years. After spring migration, individuals may histolyse their flight muscles and lay all their eggs in one pool or they may retain their flight ability and lay fewer eggs in total but spread them in several pools. We use a simple two-habitat model to examine the question of habitat dispersal. Our results indicate that, although the value of the evolutionary stable dispersal depends on the degree of variability in the environment and on the probability of local extinctions in either habitat, the population always disperses to both habitats as a consequence of density dependent growth. We use a more detailed multiple-rockpool habitat model to examine the question of wing muscle histolysis as a response to density dependence. Our results indicate that a wing muscle histolysis response to population density is an evolutionarily stable strategy when compared with the two alternatives of females always histolysing or never histolysing their flight muscles. The application of evolutionarily stable theory to stochastic problems presents a number of difficulties. We discuss these difficulties in the context of computing evolutionarily stable strategies for the problems at hand.  相似文献   

8.
In this paper, I analyse the interaction between the holm-oak Quercus ilex , and one of its main dispersers, the European jay Garrulus glandarius , in an heterogeneous Mediterranean landscape. I quantify the spatial dispersal pattern of the seed shadow at two spatial scales, landscape (among patches) and microhabitat (within patches), by directly tracking the movement of seeds. Two main traits of the jay-mediated dispersal of holm-oak acorns across the landscape, the spatial pattern of dissemination and the distance from the source tree, are significantly and directly influenced by jay activity. Jays moved acorns nonrandomly, avoiding one main patch type of the study area to cache acorns, the shrubland-grasslands, and moving most of the acorns to pine stands, whether afforestation or open pinewoods. Within each patch type, jays had also a strong preference for caching acorns in some microhabitats, since>95% of the acorns dispersed by jays were cached beneath pines. The distance of holm-oak acorn dispersal was long in the study site, over 250 m, with some dispersals occurring up to 1 km from the source oaks. The shape of the dispersal kernel function fitted to the dispersal pattern produced by jays differed from those quantified for many other plant species. Jay-mediated dispersal had two components, one local and another produced by long-distance dispersal. Due to the heterogeneity of these Mediterranean environments, this difference in scale overlaps with a difference in habitat composition, short distances events resulting in dispersals within the same oak stands and long distance events resulting in dispersal outside of oak stands, usually to other vegetation units. Jay activity and movement pattern can have thus dramatic effects on both the local regeneration as well as the potential for regional spread of the holm-oak populations.  相似文献   

9.
The role of stochasticity and spatial heterogeneity in foraging systems is investigated. We formulate a spatially explicit model which describes the behaviour of grazing animals in response to local information using simple stochastic rules. In particular the model reflects the biology in that decisions to move to a new location are based on visual assessment of the sward height in a surrounding neighbourhood, whilst the decision to graze the current location is based on the residual sward height and olfactory assessment of local faecal contamination. It is assumed that animals do not interact directly, but do so through modification of, and response to a common environment. Spatial heterogeneity is shown to have significant effects including reducing the equilibrium intake rate and increasing the optimal stocking density, and must therefore be taken into account by resource managers. We demonstrate the relationship between the stochastic spatial model and its non-spatial deterministic counterpart, and in the process derive a moment-closure approximation to the full process, which can be regarded as an intermediate, or pseudo-spatial model. The role of spatial heterogeneity is emphasized, and better understood by comparing the results obtained from each approach. The relative efficiency of random and directed searching behaviour in spatially heterogeneous environments is explored for both clean and contaminated pastures, and the impact of faecal avoidance behaviour assessed.  相似文献   

10.
We find the evolutionarily stable dispersal behaviour of a population that inhabits a heterogeneous environment where patches differ in safety (the probability that a juvenile individual survives until reproduction) and productivity (the total competitive weight of offspring produced by the local individual), assuming that these characteristics do not change over time. The body condition of clonally produced offspring varies within and between families. Offspring compete for patches in a weighted lottery, and dispersal is driven by kin competition. Survival during dispersal may depend on body condition, and competitive ability increases with increasing body condition. The evolutionarily stable strategy predicts that families abandon patches which are too unsafe or do not produce enough successful dispersers. From families that invest in retaining their natal patches, individuals stay in the patch that are less suitable for dispersal whereas the better dispersers disperse. However, this clear within-family pattern is often not reflected in the population-wide body condition distribution of dispersers or non-dispersers. This may be an explanation why empirical data do not show any general relationship between body condition and dispersal. When all individuals are equally good dispersers, then there exist equivalence classes defined by the competitive weight that remains in a patch. An equivalence class consists of infinitely many dispersal strategies that are selectively neutral. This provides an explanation why very diverse patterns found in body condition dependent dispersal data can all be equally evolutionarily stable.  相似文献   

11.
12.
A herd of 28–33 Japanese Black cows (Bos taurus) were allowed to graze on an experimental plot comprising monoculture swards of centipedegrass (Eremochloa ophiuroides) and bahiagrass (Paspalum notatum) (0.39 and 0.61 ha, respectively) for 3–5 days each month (from 0850 to 1600 hours) between May (late spring) and October (mid-autumn). On a monthly basis, the animals showed an increasing trend to select centipedegrass in preference to bahiagrass as the relative crude protein (CP) concentration of the former increased relative to the latter. On a daily basis, the animals showed a decreased selectivity for centipedegrass with the progression of grazing days, as centipedegrass sward lost both quantity and quality faster than bahiagrass sward under higher degrees of defoliation. Animals maintained similar bite rates on the two swards by modifying feeding station behavior as soon as they switched between the swards, i.e., they increased the number of bites per feeding station and decreased the number of feeding stations selected per unit grazing time soon after switching to centipedegrass, with the reverse process occurring soon after the switch to bahiagrass. The results show CP concentration to be a partial forage factor influencing animals’ choice between tropical grasses growing as patches. The results also demonstrate that animals have an ability to adapt their foraging behavior flexibly and rapidly to varying types of vegetation.  相似文献   

13.
Plant populations were reintroduced to the coastal dune bar of the Devesa de Albufera from 1988 to 2004; different coastline sections received different species composition and cover. With the aim to detect spatial and temporal variation of floristic diversity, we compared current species composition and cover across the length of the Devesa and across the dune bar with those imposed at the time of restoration. Non-metric multidimensional scaling (NMDS) detected significant differences both across the dune faces and across the coast sections. Differences across the dune faces reflect the sea-inland ecological gradient and resulted from a spatial rearrangement of plant populations: Calystegia soldanella, Achillea maritima and Polygonum maritimum prefer the windward face; Malcolmia littorea and Lagurus ovatus the leeward. Differences across coast sections are related to those at restoration time, with a slow trend towards the homogenization of plant communities. At the current level of anthropic pressure, the plant cover is likely to evolve following the trends pointed out in this research.  相似文献   

14.
Endozochorous seed dispersal by herbivores can affect plant spatial dynamics and macroecological patterns. We have investigated the number and species composition of viable seeds deposited in faeces of a full guild of macroherbivores (four deer and two lagomorph species) in a forest in eastern Britain. One hundred and one plant species germinated from faecal pellet material, 85 of which were among the 247 vascular plant species recorded in the forest. However, three species – Chenopodium album, Urtica dioica and Agrostis stolonifera – comprised 56% of the seedlings recorded. Of the species recorded in faecal samples, 36% had no recognised dispersal mechanism, while very few (7%) were adapted to endozoochorous dispersal (fleshy fruit or nut). The number of species dispersed by the herbivores was ranked Cervus elaphus and Dama dama (96) > Capreolus capreolus (40) > Muntiacus reevesi (31) > Oryctolagus cuniculus (21) > Lepus europaeus (19), with the other taxa dispersing subsets of those dispersed by C. elpahus and D. dama. The invasive M. reevesi deposited the fewest seeds per gram of faecal pellet material (0.4 g−1) and hence fewer seeds per unit area than other deer species despite their numerical dominance, while C. elaphus/D. dama deposited the most (0.43 seeds m−2 year−1). Due to differences in faecal seed density among habitats combined with the ranging behaviour of animals, more seeds were deposited in younger stands, enhancing the potential contribution of macroherbivores to population persistence by dispersal and colonisation in a successional mosaic. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Several studies have indicated the potential importance of nutrients, other than energy, in determining foraging decisions. A model was developed to test this idea, on the assumption of an intake maximization for different nutrients (energy, sodium and phosphorus). The model predictions were tested using field data from cattle grazing in a landscape mosaic of Pleistocene cover-sand and riverine grassland. Observations on foraging behaviour, food intake and diet composition were collected in thirteen 4-day-periods over 2 years. Habitat selection was determined by comparing the proportion of grazing time in different vegetation units with the available area proportion of the units. Two levels of habitat selection were examined: a micro-level (fine-scale, where vegetation units were considered separately) and a macro-level (coarse-scale, where vegetation units were combined to give selection at the landscape level). At the micro-level of habitat selection, no selection was apparent between the vegetation units of the riverine landscape, but the Deschampsia flexuosa unit was significantly selected for in the cover-sand landscape. At the landscape (macro-) level, the animals preferred the riverine landscape. The model revealed poor predictions of habitat occupancy on a micro-level. A much better prediction was obtained when vegetation units were combined at a macro-level. The D. flexuosa unit provided a higher energy intake, whereas the intake of sodium was higher in riverine grassland. Phosphorus proved relatively significant in determining habitat occupancy. Based on energy maximization alone, the model was a very poor predictor of habitat occupancy. It is argued that selection occurred mainly at the macro-level. The incorporation of different nutrient constraints in foraging models can then prove fruitful when seeking explanations of habitat occupancy. At the micro-level, difficulties for the animal in assessing nutrient availability may result in a less selective foraging pattern. However, the costs of increased selectivity may be greater than the benefits.  相似文献   

16.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

17.
The sexual reproduction of annual and perennial Zostera marina was investigated in Moon Lake, Shandong, China. Based on the disturbance and stress regimes, the Z. marina beds were classified into five types: intertidal annual (IA) and perennial (IP) eelgrass patches, subtidal patch area (PA), meadow margin (MM) and meadow center (MC). Seed dispersal was investigated using artificial seagrass units in the five areas and another two areas [adjacent bare area and Zostera japonica meadow (Zj)]. Total and flowering shoot density and aboveground biomass of flowering shoots per unit area were higher in PA and MM, and lower in IA and IP, whereas the total biomass per unit area in MC showed the highest value. Reproductive effort (RE) in IA showed negative response to intertidal stress, while in perennial IP, PA and MM it showed significantly positive response to anthropogenic or natural disturbances. The density-based RE in perennial IP, PA and MM was 1.1-, 5.1- and 5.1-fold higher than that in MC, while in annual IA it was 0.46-fold lower. Additionally, the biomass-based RE in IP, PA and MM was 1.8-, 3.5- and 3.8-fold higher than that in MC, while the RE in IA was 0.84-fold lower. The estimated seed production per unit area was much greater in PA (60,793 ± 9,843 seeds m?2) and MM (43,414 ± 8,718 seeds m?2) than in IA (416 ± 83 seeds m?2), IP (3,820 ± 1,470 seeds m?2) and MC (9,779 ± 631 seeds m?2), while the seed density ranged from 24 ± 6 to 584 ± 56 seeds m?2. Results suggested that in response to disturbances and stress, Z. marina in subtidal areas increased their RE and seed production and thus seeds were available to be dispersed into areas where seed production was limited.  相似文献   

18.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

19.
20.
Evolution of local adaptation depends critically on the level of gene flow, which, in plants, can be due to either pollen or seed dispersal. Using analytical predictions and individual-centred simulations, we investigate the specific influence of seed and pollen dispersal on local adaptation in plant populations growing in patchy heterogeneous landscapes. We study the evolution of a polygenic trait subject to stabilizing selection within populations, but divergent selection between populations. Deviations from linkage equilibrium and Hardy-Weinberg equilibrium make different contributions to genotypic variance depending on the dispersal mode. Local genotypic variance, differentiation between populations and genetic load vary with the rate of gene flow but are similar for seed and pollen dispersal, unless the landscape is very heterogeneous. In this case, genetic load is higher in the case of pollen dispersal, which appears to be due to differences in the distribution of genotypic values before selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号