首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Endozoochrous seed dispersal by herbivorous mammals has been verified repeatedly and its possible influence on the structure and function of herbaceous communities has been suggested. Quantitative studies, however, are lacking in the field of seed dispersal via the dung of herbivore guilds in little-altered environments. The present paper analyses seed dispersal via rabbit, fallow deer, red deer and cow dung in a Mediterranean dehesa (open woodland used for hunting and ranching) during the seeding season. Dung seed content was determined by the glasshouse cultivation of eight dung samples from each herbivore, collected fortnightly between February and August. The four herbivores disperse many seeds (spring averages are 6–15 seeds per gram of dry dung and maxima of 25–70) from a large number of species (totals between 52 and 78). Dispersal seems to be mainly determined by seed production of the plant comminity. This is reflected in (i) the dissemination of a high percentage of the species present in the dehesa, (ii) great seasonal variability, related to seed production, in the amount of seeds and number of species dispersed, and (iii) a high semi-quantitative similarity of seed content in the four types of herbivore dung throughout the year. There is also important quantitative variation that depends on animal traits and feeding habits. These results and the characteristics of species found in dung suggest the adaptation of plant species to the dispersal of their seeds via herbivore gut. This process may well have profound implications for vegetation dynamics and the evolution of plant traits.  相似文献   

2.
Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples (n=24) from sheep were collected between September 2006 and November 2007 from five sites with Mesobromion plant communities, and communities of Nardo‐Galion saxatilis. Germinability and identity of seeds in the dung samples were ascertained from germination of seedlings under glasshouse conditions. Seed traits of species with viable seeds in dung were compared with those present in the local species pool. Results: Seventy‐two plant species from 23 plant families had viable seeds in sheep dung. The plant families encountered most frequently were Gramineae and Compositae. The most abundant and frequently recorded plant species in dung samples was Urtica dioica, accounting for >80% of the total number of seeds. Mean seed density in sheep dung was 0.8 seeds g?1 dry matter. Seeds with low seed mass and a high seed longevity index were over‐represented in dung. Viable seeds >2.5 mg were infrequent in the dung samples. Conclusions: We conclude that sheep are potentially important dispersers of plant species in Dutch calcareous grasslands. Although smaller seeds were relatively abundant in sheep dung, it cannot be excluded that this was mainly caused by differences in seed abundance.  相似文献   

3.
Seed dispersal is a crucial process for the dynamics and maintenance of plant populations. Free-ranging animals are effective dispersal vectors because they can move between similar habitats and transport seeds into favourable environments. Dung samples from two species of common free-ranging mammals—deer and wild boar—were used to study endozoochorous dispersal of seeds in a military training area in western Bohemia. The area was abandoned after WWII, and the military training area was established in 1953. The vegetation consists of shrublands and dry grasslands. Data on the local species pool of grassland herbs and forbs were collected to compare the characteristics of dispersed versus non-dispersed plants. Deer and wild boar dispersed 84 plant species; however, species composition of seedlings emerging from dung samples showed significant differences between dispersal vectors and notable change across the growing season. 80% of all seedlings extracted from the dung samples belonged to stinging nettle, Urtica dioica. From trait analyses, seeds of endozoochorous plants had a higher longevity index in the soil seed bank than non-endozoochorous plants and more often possessed a mucilaginous surface. Our results show that deer and boar are successful, though not substitutable dispersers.  相似文献   

4.
The relationship between domestic cattle and vegetation change in a savanna woodland was evaluated with respect to dung deposition and the dispersal and establishment of mesquite (Prosopis glandulosa var. glandulosa, Mimosaceae), a cosmopolitan woody invader of grasslands in the southwestern USA. Dung deposited in autumn disintegrated rapidly, leaving patches of bare ground ranging from 50 to 900 cm2. Herbaceous cover on gaps created by dung deposition recovered to levels comparable to neighboring vegetation by the end of the following growing season. Vegetation colonizing gaps consisted primarily of grasses not found in the surrounding vegetation. Dung deposition increased species diversity and spatial heterogeneity of the herbaceous vegetation and contributed to the development of a fine-grain mosaic of small patches of varying successional age-states.The role of cattle in facilitating the ingress and establishment of mesquite has broader implications with regard to the conversion of grasslands to woodlands. On the site with cattle, mesquite seedlings were found in 75% of dung pats surveyed in September (mean =4.2 seedlings per pat; maximum =50). Although seedling survival in dung (79%) was only 16% greater than that of mesquite emerging from seeds experimentally sown away from dung, no seedlings were found on areas without cattle. Mean (± SE) density of mesquite seedlings ranged from 12±2 to 15±2 m-2 on the site with cattle. Seed densities away from parent plants averaged 10.7 m-2 and 0.0 m-2 on areas with and without cattle, respectively. Seed densities beneath adult plants were comparable between sites.The high density of seedlings on areas with cattle, in contrast to absence of seedlings on the area without cattle, suggests rates of invasion of grasslands by mesquite would have increased substantially in North America following the settlement and introduction of domestic ungulates. Prior to the introduction of livestock, poor seed dissemination and germination may have limited its Holocene spread.  相似文献   

5.
Seed dispersal via ingestion and defecation by large herbivores provides a possible aid for ecological restoration of plant communities, by connecting source communities of target species with habitat restoration sites. It is also a possible threat due to invasion of weeds, grasses or exotic species. Insight into the factors determining internal seed dispersal could therefore improve the management of grazed ecosystems.

We recorded viable seed density in cattle, sheep and pony dung samples and monitored dung pat colonisation in the field. In addition, we counted the distribution of dung pats in plots spread over all habitat units in our study site.

The three herbivore species appeared to disperse large quantities of many species (61 in total) from a variety of plant families, monocots as well as dicots. The density of viable seeds in herbivore dung and the colonisation of dung pats were positively correlated with Ellenberg nitrogen indicator values and seed supply, but not with seed mass or shape.

The results imply that many seeds are dispersed from high productive to low productive parts of the grazed area. In free-ranging systems, we therefore recommend enclosure and separate management of plant communities on nutrient-poor soils with high conservation interest. For habitat restoration sites we recommend integrated grazing only with target plant communities on nutrient-poor soils and not with plant communities on nutrient-richer soils.  相似文献   


6.
Species-rich, winter-rainfall, microphyllous Renosterveld vegetation in the Western Cape Province of South Africa has largely been transformed for production of wheat and wine. Remaining fragments thus have high conservation value. Abandoned old fields adjacent to natural vegetation fragments could potentially be restored as corridors and habitat for indigenous flora and fauna. We hypothesised that indigenous antelope maintained in a matrix of natural vegetation and abandoned field could play a role in restoration of Renoserveld via seed dispersal.We collected dung of indigenous ungulates in an abandoned field at various distances from natural Renosterveld vegetation, in order to assess the potential of large herbivores to contribute to restoration of plant diversity through seed dispersal. Emerged seedlings from the collected dung represented 29 forb, 13 grass, four sedge, four geophyte and one shrub species. The most abundant emerging seedlings were lawn grass Cynodon dactylon (38%), alien pasture grasses (31%) and indigenous geophyte Romulea rosea (12%). Whereas seeds of annual forbs and grasses were dispersed, only one shrub species was dispersed at very low density. We concluded that large herbivores could retard the rate of recovery of Renosterveld vegetation because viable seeds of herbaceous plants, particularly alien annual grasses and lawn-grasses were more abundant in the dung than the shrub, geophyte or perennial tussock grass species that characterise this vegetation type.  相似文献   

7.
Although seed dispersal is considered to be a key process determining the spatial structure and spread of non-native plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, seed distribution and seedling recruitment to gain insight into the process of exotic species invasion within a fragmented landscape context. The present study analyses the relationship between avian frugivory and spatial patterns of seed deposition and seedling recruitment for an expanding population of the invasive Prunus serotina in a hedgerow network landscape in Flanders, Belgium. We quantified fruit production, observed frugivores, and determined the spatial distribution of bird droppings and P. serotina seedlings. A relatively diverse assemblage of frugivores visited P. serotina seed trees, with Columba palumbus and Turdus merula being by far the most important dispersers. Landscape structure strongly affected dispersal vector behaviour and the spatial distribution of perching birds, droppings and seedlings. Frugivorous birds non-randomly dispersed seeds to perching sites and an association between perching birds, seed deposition and seedling recruitment was found. Results indicate that landscape structure contributes to non-random seed deposition of P. serotina by common local frugivores. Cutting the larger seed trees is proposed as the most feasible measure to slow down the invasion rate.  相似文献   

8.
Dung beetles fulfill several key functions in ecosystems but their role as secondary seed dispersers is probably one of the most complex ones. Various factors, such as seed characteristics, dispersal pattern induced by the primary disperser, season, and habitat, can affect the seed–beetle interaction. Particularly little is known about the fate of seeds primarily dispersed in small feces. The aim of this study was to investigate the effects of these factors on the dung beetle community (species composition, number and size of individuals) and its consequences on burial occurrence and depth of seeds primarily dispersed by two tamarin species. We captured dung beetles in a Peruvian rain forest with 299 dung‐baited pitfall traps to characterize the dung beetle community. Seed burial occurrence and depth were assessed by marking in situ 551 dispersed seeds in feces placed in cages. Among these seeds, 22.5 percent were buried by dung beetles after 2 d. We observed a significant effect of the amount of dung, season, time of deposition, and habitat on the number of individuals and species of dung beetles, as well as on seed burial occurrence and depth, while the tamarin species significantly influenced only the number and the size of dung beetles. This seed dispersal loop is particularly important for forest regeneration: small to large seeds dispersed by tamarins in secondary forest can be buried by dung beetles. These seeds can thus benefit from a better protection against predation and a more suitable microenvironment for germination, potentially enhancing seedling recruitment.  相似文献   

9.
To assess the diversity of weed seeds dispersed via horse dung, we reviewed 15 studies on seed germination from horse dung – six from Europe, four from North America, three from Australia and one study each from Africa and Central America. Seed from 249 species from 43 families have been identified germinating from horse dung. Almost two‐thirds of the species were forbs and 33% graminoids, with over half being perennials and 32% annuals. Nearly every species (totalling 99% of those reviewed) is considered a weed somewhere, with 47% recorded as invasive and 19% international environmental weeds. Of the 2739 non‐native plants that are naturalized in Australia, 156 have been shown to germinate from horse dung. This includes 16 of the 429 listed noxious weeds in Australia and two weeds of national significance. Seed from 105 of the 1596 invasive/noxious plant species in North America have also been identified germinating from horse dung. Seed traits including seed size, length, width and mass affect dispersal via horse dung. Habitat disturbance from trampling facilitates germination of seedlings from dung in both natural and experimental studies. Some studies found that plants germinating from dung reach maturity and flower, while others found plants did not survive due to unfavourable growing conditions in the field. The diversity of species with seed that can germinate from horse dung highlights the potential of horses to disperse a range of seed over long distances. Whether such dispersal is beneficial or harmful depends on the plant and the context in which it germinates. To maintain the conservation value of protected areas, it is important to understand and manage the different potential weed dispersal vectors, including horses.  相似文献   

10.
  • Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment.
  • We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions).
  • Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions.
  • According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung.
  相似文献   

11.
Ellen Andresen 《Biotropica》1999,31(1):145-158
Primary seed dispersal by two species of monkeys and the effects of rodents and dung beetles on the fate of dispersed seeds are described for a rain forest in southeastern Perú. During the six-month study period (June–November 1992) spider monkeys (Ateles paniscus) dispersed the seeds of 71 plant species, whereas howler monkeys (Alouatta seniculus) dispersed seeds of 14 species. Spider and howler monkeys also differed greatly in their ranging behavior and defecation patterns, and as a consequence, produced different seed rain patterns. Monkey defecations were visited by 27 species of dung beetles (Scarabaeidae). Dung beetles buried 41 percent of the seeds in the dung, but the number of seeds buried varied greatly, according to seed size. Removal rates of unburied seeds by rodents varied between 63–97 percent after 30 d for 8 plant species. The presence of fecal material increased the percentage of seeds removed by seed predators, but this effect became insignificant with time. Although seed predators found some seeds buried in dung balls (mimicking burial by dung beetles), depth of burial significantly affected the fate of these seeds. Less than 35 percent of Brosimum lactescens seeds buried inside dung balls at a depth of 1 cm remained undiscovered by rodents, whereas at least 75 percent of the seeds escaped rodent detection at a depth of 3 cm and 96 percent escaped at 5 cm. Both dung beetles and rodents greatly affected the fate of seeds dispersed by monkeys. It is thus important to consider postdispersal factors affecting the fate of seeds when assessing the effectiveness of frugivores as seed dispersers.  相似文献   

12.
Dung beetles form an insect group that fulfils important functions in terrestrial ecosystems throughout the world. These include nutrient cycling through dung removal, soil bioturbation, plant growth, secondary seed dispersal and parasite control. We conducted field experiments at two sites in the northern hemisphere temperate region in which dung removal and secondary seed dispersal were assessed. Dung beetles were classified in three functional groups, depending on their size and dung manipulation method: dwellers, large and small tunnelers. Other soil inhabiting fauna were included as a fourth functional group. Dung removal and seed dispersal by each individual functional group and combinations thereof were estimated in exclusion experiments using different dung types. Dwellers were the most diverse and abundant group, but tunnelers were dominant in terms of biomass. All dung beetle functional groups had a clear preference for fresh dung. The ecosystem services in dung removal and secondary seed dispersal provided by dung beetles were significant and differed between functional groups. Although in absolute numbers more dwellers were found, large tunnelers were disproportionally important for dung burial and seed removal. In the absence of dung beetles, other soil inhabiting fauna, such as earthworms, partly took over the dung decomposing role of dung beetles while most dung was processed when all native functional groups were present. Our results, therefore, emphasize the need to conserve functionally complete dung ecosystems to maintain full ecosystem functioning.  相似文献   

13.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

14.
The effects of dung form and condition and of dung beetles on the emergence of seedlings from herbaceous seeds in sika deer dung were examined in a temperate grassland ecosystem dominated by Zoysia japonica and Hydrocotyle maritima. I conducted field experiments to compare seedling emergence between dung exposed to dung beetles and intact dung using both dung pellets and pats during a typical rainy month (June) and the hottest, drier month (August), when large numbers of seeds of the dominant species were present in the dung. The exposed dung was immediately attacked and broken up by dung beetles, whereas dung protected from the beetles remained intact. In June, at least 12 herbaceous species, including Z. japonica, H. maritima, Mazus pumilus, and Plantago asiatica, emerged from the dung, versus at least six species in August. Decomposition rates of the pellets in June and decomposition scores of the pats in June and August were positively correlated with the number of emerging seedlings, suggesting that the acceleration of decomposition by dung beetles can positively affect seed germination. In this system of interactions among sika deer, herbaceous plants, and dung beetles, sika deer dung prevented seeds from germinating, and beetles had an indirect positive effect on seedling emergence by accelerating decomposition of the dung, although the extent of the effect may depend on the dung type, plant species, and environmental factors.  相似文献   

15.
Seed dispersal of dry-fruited shrubs has received little attention in Mediterranean areas despite their frequency in the vegetation and the consideration given to the dispersal of fleshy-fruited shrubs in the area. Red deer faeces has recently been found to contain large numbers of seeds from one of the most common shrubs of this group, gum cistus Cistus ladanifer, although its importance in the reproduction of the species is unknown. This study examines the role of the red deer as an effective disperser of C. ladanifer. For this purpose, we quantify i) the C. ladanifer seed content in red deer dung over a year, ii) the seed shadow generated by the red deer wish their faeces during the same period, and iii) the ability of the dung-borne seeds to germinate and establish as seedlings under field conditions within five years following excretion. The results reveal an extremely high seed Content of the species in red deer dung (up to 80.5 ± 41.9 germinable seeds g-1), which is virtually confined to the summer (July–August), when we estimate that a red deer defecates up to 24 000 seeds of the species per day. Furthermore, red deer mainly deposit gum cistus seeds amongst plant formations lacking the species: over the year, red deer excrete <2600 seeds m-2 in C. ladanifer-dominated scrub and 7400–8800 seeds m-2 in other plant formations. Under natural conditions, the dung-borne seeds have a more sniggered among-years germination pattern than free seeds in the soil. Though no seedling survived its first summer drought, the survival of seedlings sprouted from dung was significantly longer than that of control seedlings in the first and third years after deposition, and indistinguishable from it the second, fourth and fifth years. This is the first quantification of the importance of red deer to C. ladanifer dispersal and establishment, and suggests that endozoochory by mammalian herbivores can be very valuable for dry-fruited shrubs in the Mediterranean region.  相似文献   

16.
The directed dispersal hypothesis has two components: (1) non-random seed deposition by a predicted vector, which removes greater amounts of seeds to specific sites, and (2) higher seed survival and seedling establishment in these specific sites. Several studies suggest that ants perform both tasks. This study was designed to cover the processes from post-dispersed seeds to established juvenile plants of a typical ant-dispersed species. Our main objective was to determine whether Ricinus communis benefits from directed dispersal by ants to maintain its populations in previously colonized habitats. We examined whether there were differences between ant nest pile mounds and their vicinities in the: (1) densities of seeds with and without elaiosome, seedlings and juveniles; (2) performance of post-dispersed seeds (without elaiosome), which may be affected by seed density, a key feature attracting seed predators; (3) nutrient quantities; (4) number of germinated seeds and juvenile biomass measurements; and (5) ant protection of seedlings from herbivores. There were more seeds without elaiosome, seedlings and juveniles in pile mounds, and seeds with elaiosome were equally distributed. There was no difference in the number of non-removed seeds in pile mounds and in their vicinities, and there was no tendency for this difference to increase or decrease with time or with initial seed density. Apparently, there was no difference in nutrient contents in soils of pile mounds and their vicinities. Likewise, there was no difference in the number of seeds germinated and in the biomass measurements of juveniles in both soils. Ants did not provide differential protection for seedlings in pile mounds against potential herbivores. The dispersal of Ricinus seeds by ants had a marked effect on the distribution pattern of the seeds, seedlings and juveniles of this species. However, there were no additional advantages for the seeds, seedlings and juveniles in pile mounds and, therefore, Ricinus does not benefit from directed dispersal by ants to maintain its populations in the study sites.  相似文献   

17.
Extensive grazing often has a strong influence on the structure and composition of herbaceous plant communities with increasing population sizes for some species and decreasing presence in others. Herbivores affect plant communities directly by selective grazing of plant species, and indirectly by either epizoochory or endozoochory. Helianthemum nummularium is considered an increasing species because its distribution increased after the introduction of large, free-ranging grazers in at least two coastal dune grassland areas in Belgium. However, its seeds lack any obvious adaptations for epizoochory, and direct observations of plant/seed consumption are scarce. Through field and lab experiments, we assessed the dispersal ability of H. nummularium via endozoochory and epizoochory. In a differentiated grazer exclusion experiment, evidence was found that plants are grazed by large domestic ungulates and small wild herbivores although these incidences were rare. Direct endozoochory evidence remained scarce. No seeds were found germinating in field-collected dung, and only few seedlings emerged following a seed feeding experiment. However, once deposited, we found higher growth rates when seeds were mixed with dung and decreased establishment success when seeds were sown in combination with competitively superior species. Epizoochory was plausible because both fur and hooves of cattle and horses were potentially capable of contributing to the transport of H. nummularium seeds. We conclude that herbivores play a role in seed dispersal, while their selective grazing behaviour most probably creates an appropriate environment for Helianthemum establishment and maintenance.  相似文献   

18.
王树林  侯扶江 《生态学报》2023,43(11):4369-4389
成熟种子被动物采食和排泄后,沉积在粪便中的有活力的种子称为粪种子库。种子经动物消化道携带而实现传播的过程称为消化道传播,粪种子库是种子消化道传播的必经阶段和关键节点。粪种子库和种子消化道传播一直以来都是生态学家关注的热点。介绍了粪种子库的形成原因和理论基础,指出粪种子库是动-植物互作的结果;讨论了影响粪种子库结构和组成的因素,包括种子形态、动物种类和外界环境对粪种子库生态功能的调控作用;阐述了粪种子库的生态意义,主要表现为种子远距离传播、粪便物质返还以及促进植物群落更新和发展;最后指出将来关于粪种子库的研究需要重点关注的几个方面问题,以期为合理、全面认识粪种子库提供理论参考,并为深刻理解动-植物互作机制提供科学依据。  相似文献   

19.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

20.
Hiroki Sato 《Biotropica》2012,44(4):479-488
In the Ankarafantsika tropical dry forest (northwestern Madagascar), the common brown lemur (Eulemur fulvus fulvus) is the largest frugivore and probably the sole disperser of large‐seeded plants (seed diameter > 10 mm). To investigate seed dispersal by this primate, I recorded the feeding activities of a troop; also conducted fecal analyses, germination trials on defecated seeds, and a vegetation survey over 1 yr (beginning Dec 2006). Brown lemurs mostly consumed fruit (68%). The fruit of Vitex beraviensis was the most exploited resource (21% of total feeding time). Among dung samples, 1126 contained intact seeds of 70 plant species, with a median of six seeds and two species per sample. These data indicate that the brown lemur population dispersed approximately 9854 seeds/km2/d. Although the number of annually defecated seeds was overwhelmingly the largest in Grewia triflora, many of the small seeds were often clumped in dung piles. In contrast, large seeds of V. beraviensis occurred in the largest number of dung samples. The rate and time of seed germination in V. beraviensis were improved by passage through brown lemur guts. Therefore, V. beraviensis may readily establish seedlings in sites of brown lemur fecal deposition. Vitex beraviensis and brown lemurs are probably involved in a strong mutualism. Twenty‐three large‐seeded plants were probably dependent on brown lemurs for seed dispersal and some of these species were common trees in the forest. Maintenance of these key plant–animal interactions will probably contribute to the conservation of species diversity and intact regeneration of the Ankarafantsika forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号