首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to alpha6beta1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system.  相似文献   

2.
Small GTP-binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho-specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild-type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1(Q61L) is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.  相似文献   

3.
Coordinated cell migration is a fundamental feature of embryogenesis but the intracellular mechanism by which cells integrate co-existing extracellular cues to yield appropriate vectoral migration is unknown. Cells in the cornea are guided by a naturally occurring DC electric field (EF) (electrotaxis) as they navigate non-planar substrata but the relative potencies of electrotaxis and guidance by substratum shape (contact guidance) have never been determined. We tested the hypothesis that vectoral migration was controlled by selective activation of rac, cdc42 or rho in response to a 150 mV/mm EF or to a series of parallel substratum nanogrooves (NGs) 130 nm deep. EFs and NGs were presented singly or in combination. Electrotaxis of dissociated bovine corneal epithelial cells (CECs) on planar quartz required signalling by cdc42 and rho but not rac. Contact guidance by substratum NGs required rho but not cdc42 or rac activities. When an EF and NGs were superimposed in parallel, cathodal electrotaxis along NGs was enhanced compared to that on planar quartz but when they were superimposed orthogonally (vertical NGs with horizontal EF) cells were recruited from contact guidance to electrotaxis, suggesting that the EF was more potent. However, increasing the EF to 250 mV/mm was insufficient to recruit the majority to electrotaxis. Consistent for the cues in isolation, when an EF (150 mV/mm) and NGs were superimposed orthogonally, rac activity was not essential for either contact guidance or electrotaxis. However, attenuation of cdc42 signalling abolished electrotaxis and enhanced contact guidance relative to controls (no drug), whereas inhibiting rho signalling enhanced electrotaxis and rho stimulation enhanced contact guidance. Our data are consistent with the idea that migrating CECs use a cdc42/rho “switch” to sort vectoral cues, with cdc42 controlling electrotaxis and rho controlling contact guidance.  相似文献   

4.
M J Hart  M G Callow  B Souza    P Polakis 《The EMBO journal》1996,15(12):2997-3005
Proteins that associate with the GTP-bound forms of the Ras superfamily of proteins are potential effector targets for these molecular switches. A 195 kDa protein was purified from cell lysates by affinity chromatography on immobilized cdc42Hs-GTP and a corresponding cDNA was isolated. Sequence analysis revealed localized identities to calponin, the WW domain, unconventional myosins and to the rasGAP-related domain (GRD) contained in IRA, NF-1, SAR1 and rasGAP. p195 was found to be identical to IQGAP1, a protein previously reported to bind ras. Purified recombinant p195/IQGAP1 bound to and inhibited the GTPase activity of cdc42Hs and rac whereas no interaction with ras was detected. The C-terminal half of IQGAP1 containing the GRD bound to cdc42 and rac in a GRD-dependent fashion, but a smaller fragment containing only the GRD did not. Cdc42 was also co-immunoprecipitated from cell lysates with antibody specific to p195/IQGAP1. Calmodulin also co-immunoprecipitated with p195/IQGAP1 and was found to associate with fragments containing the IQ domain. Expression of a cDNA fragment encoding the GRD inhibited the CDC24/CDC42 pathway in yeast, but no effect on ras was observed. In mammalian cells, both endogenous and ectopically expressed p195/IQGAP1 were localized to lamellipodia and ruffling cell membranes, where co-localization with actin was apparent. These results suggest that IQGAP1 is an effector target for cdc42Hs and may mediate the effects of this GTPase on cell morphology.  相似文献   

5.
Gelsolin is a downstream effector of rac for fibroblast motility.   总被引:18,自引:1,他引:17       下载免费PDF全文
Rac, a member of the rho family of GTPases, when activated transmits signals leading to actin-based membrane ruffling in fibroblasts. Compared with wild-type fibroblasts, gelsolin null (Gsn-) dermal fibroblasts have a markedly reduced ruffling response to serum or EGF stimulation, which signal through rac. Bradykinin-induced filopodial formation, attributable to activation of cdc42, is similar in both cell types. Wild-type fibroblasts exhibit typical lamellipodial extension during translational locomotion, whereas Gsn- cells move 50% slower using structures resembling filopodia. Multiple Gsn- tissues as well as Gsn- fibroblasts overexpress rac, but not cdc42 or rho, 5-fold. Re-expression of gelsolin in Gsn- fibroblasts by stable transfection or adenovirus reverts the ruffling response, translational motility and rac expression to normal. Rac migrates to the cell membrane following EGF stimulation in both cell types. Gelsolin is an essential effector of rac-mediated actin dynamics, acting downstream of rac recruitment to the membrane.  相似文献   

6.
Helicobacter pylori induces signaling cascades leading to changes in cytoskeleton and an inflammatory response. Information on the morphological changes and cytoskeletal rearrangements induced by attachment of the bacterium is contradictory and signal transduction pathways are not well known. Since rho family of small GTPases is known to mediate cytoskeletal response to various extracellular stimuli, and is also involved in several other important signal transduction pathways, we have investigated the role of rac and cdc42 in H. pylori-induced cytoskeletal changes in cultured carcinoma AGS cells. AGS cells grown with serum expressed actin filaments in the form of short stress fibers and thin network at the edges, which were depolymerized by removal of serum. In serum-starved cells both type I and type II strains of H. pylori induced formation of actin filaments and lamellipodia-like structures. Microinjection of active rac induced similar changes, but injection of inactive rac prevented the effects of H. pylori, while active or inactive cdc42 did not have any significant effect. Cytoskeletal effects of H. pylori were inhibited by actinomycin D, but not completely by cycloheximide. These results indicate that rac activation is involved in signal transduction cascade leading to cytoskeletal reorganization induced by H. pylori and that gene activation and synthesis of new proteins is necessary in this process.  相似文献   

7.
Cells that express the NG2 proteoglycan will spread on surfaces coated with monoclonal antibodies against this membrane-spanning protein. On surfaces coated with the N143 monoclonal antibody, this cell spreading occurs by extension of lamellipodia, suggesting that activation of the small GTPase rac is involved in the observed morphological change. Support for this hypothesis comes from the finding of increased levels of GTP-bound rac in cells spreading on N143-coated surfaces. Furthermore, lamellipodia extension is blocked by transfection of cells with the dominant negative rac construct N17rac, but not by transfection with N17cdc42. Formation of lamellipodia on the N143-coated surfaces is also inhibited by transfection of the dominant negative CasdeltaSD construct. This result implicates p130cas as an additional functional player in NG2-mediated cell spreading.  相似文献   

8.
The p21ras superfamily, involved in diverse processes including cell growth and intracellular trafficking, possesses intrinsic GTPase activity and cycles between GTP-bound active and GDP-bound quiescent states. This intrinsic activity, which results in down-regulation, is accelerated by GTPase activating proteins (GAPs). Other proteins regulating the GDP/GTP cycle include exchange proteins and dissociation inhibitors. The p21s rho, rac, and cdc42Hs constitute a subfamily implicated in cytoskeletal organization. BCR and n-chimaerin are prototypes of a new GAP family for these p21s. To investigate proteins modulating GTP hydrolysis of the three p21s, we developed a novel overlay assay applicable to tissue extracts. Diverse GAPs with different specificities were identified in all rat tissues. Brain contained rac1 GAPs of 45, 50, 85, 100, and 150 kDa. The p50 and p150 GAPs also act on rhoA and cdc42Hs and are ubiquitous, while the p45-GAP, n-chimaerin, is brain- and testis-specific and acts preferentially on rac1; the p100 GAP acts on both rac1 and cdc42Hs and is brain-specific. A new class of p21-interacting proteins was also identified. This diversity, versatility, and tissue specificity of GAPs may be required for fine control of the down-regulation of GTP-bound p21s and the suggested specific downstream effects of individual GAPs, which could involve "cross-talk" between GAPs and p21s.  相似文献   

9.
10.
We found a low-molecular-mass, fluorescent dye, Calcein blue am ester (CB), that labels terminal Schwann cells at neuromuscular junctions in vivo without damaging them. This dye was used to follow terminal Schwann cells at neuromuscular junctions in the mouse sternomastoid muscle over periods of days to months. Terminal Schwann cell bodies and processes were stable in their spatial distribution over these intervals, with processes that in most junctions were precisely aligned with motor nerve terminal branches. Three days after nerve cut, the extensive processes elaborated by terminal Schwann cells in denervated muscle were labeled by CB. The number and length of CB-labeled terminal Schwann cell processes decreased between 3 days and 1 month after denervation, suggesting that terminal Schwann cell processes are only transiently maintained in the absence of innervation. During reinnervation after nerve crush, however, terminal Schwann cell processes were extended in advance of axon sprouts, and these processes persisted until reinnervation was completed. By viewing the same junctions twice during reinnervation, we directly observed that axon sprouts used existing Schwann cell processes and chains of cell bodies as substrates for outgrowth. Thus, CB can be used to monitor the dynamic behavior of terminal Schwann cells, whose interactions with motor axons and their terminals are important for junction homeostasis and repair.  相似文献   

11.
Schwann cells have a unique role in regulating the growth of axons during regeneration and presumably during development. Here we show that Schwann cells are the best substrate yet identified for promoting process growth in vitro by peripheral motor neurons. To determine the molecular interactions responsible for Schwann cell regulation of axon growth, we have examined the effects of specific antibodies on process growth in vitro, and have identified three glycoproteins that play major roles. These are the Ca2+-independent cell adhesion molecule (CAM), L1/Ng-CAM; the Ca2+-dependent CAM, N-cadherin; and members of the integrin extracellular matrix receptor superfamily. Two other CAMs present on neurons and/or Schwann cells-N-CAM and myelin-associated glycoprotein-do not appear to be important in regulating process growth. Our results imply that neuronal growth cones use integrin-class extracellular matrix receptors and at least two CAMs--N-cadherin and L1/Ng-CAM-for growth on Schwann cells in vitro and establish each of these glycoproteins as a strong candidate for regulating axon growth and guidance in vivo.  相似文献   

12.
During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor–mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also facilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B.  相似文献   

13.
14.
Electron micrographs of transversely sectioned sciatic nerves removed from newborn, 3-day-old, and 7-day-old rats were used to make montages of comparable areas in the marginal bundle of the posterior tibial fascicle. At each age, the number of axons, their diameter, their relationships with Schwann cell processes, and their degree of myelination were determined. Also, three-dimensional reconstructions of representative fiber groups in the newborn nerve were made from similar montages at 5 additional transverse levels. The results showed that outgrowth of axons and migration of Schwann cells continued after birth. Families of Schwann cells, each surrounded by a common basal lamina, formed the sheaths that subdivided the bundles. Axons to be myelinated appeared to progress radially from a bundle to a 1 : 1 relationship with a Schwann cell at the sheath's outer margin. Sheaths containing multiple Schwann cells became smaller and more numerous as axon bundles were subdivided. Almost all of the isolated Schwann cells, which were separated from their neighbors by collagen were myelinating single large axons.  相似文献   

15.
Adherens junction formation is fundamental for compaction and trophectoderm differentiation during mammalian preimplantation development. We recently isolated an IQGAP-2 cDNA from a differential display-polymerase chain reaction screen of bovine preimplantation developmental stages. IQGAP-1 and -2 proteins mediate E-cadherin-based cell-to-cell adhesion through interactions with beta-catenin and the Rho GTPases, rac1 and cdc42. Our study demonstrates IQGAP-1,-2, rac-1 and cdc42 mRNAs are present throughout murine preimplantation development. IQGAP-1 and rac-1 protein distribution changes from predominantly plasma membrane associated to predominantly cytoplasmic as the embryo progresses through cleavage divisions and compaction to the blastocyst stage.  相似文献   

16.
P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other species. Here we examine their roles in the postembryonic migration of the P cell neuroblasts and the axon guidance of the ventral cord commissural motoneurons (VCCMNs). We find that the two PAKs, max-2 and pak-1, are redundantly required for P cell migration and function with UNC-73/Trio and the rac GTPases (CED-10 and MIG-2). During axon guidance of the VCCMNs, PAK-1 also acts with the rac GTPases, CED-10 and MIG-2, and is completely redundant with MAX-2. Interestingly, we find that unlike MAX-2 activity during P cell migration, for motoneuron axon guidance max-2 is also required in parallel to this PAK-1 pathway, independent of rac GTPase signaling. Finally, we provide evidence that MAX-2 functions downstream of the UNC-6/netrin receptor UNC-5 during axon repulsion and is an integral part of its signaling.  相似文献   

17.
Adherens junction formation is fundamental for compaction and trophectoderm differentiation during mammalian preimplantation development. We recently isolated an IQGAP-2 cDNA from a differential display-polymerase chain reaction screen of bovine preimplantation developmental stages. IQGAP-1 and -2 proteins mediate E-cadherin-based cell-to-cell adhesion through interactions with beta-catenin and the Rho GTPases, rac1 and cdc42. Our study demonstrates IQGAP-1,-2, rac-1 and cdc42 mRNAs are present throughout murine preimplantation development. IQGAP-1 and rac-1 protein distribution changes from predominantly plasma membrane associated to predominantly cytoplasmic as the embryo progresses through cleavage divisions and compaction to the blastocyst stage.  相似文献   

18.
G25K is a low-molecular-mass GTP-binding protein with a broad distribution in mammalian tissues. A cDNA clone was isolated by using oligonucleotides corresponding to the partial amino acid sequence of purified human G25K. The cDNA encodes an 191-amino-acid polypeptide containing GTP-binding consensus sequences and a putative farnesylation site at the C terminus. The sequence exhibits 50 and 70% identities to the mammalian rho and rac proteins, respectively, and an 80% identity to the Saccharomyces cerevisiae CDC42 gene product. Insect Sf9 cells infected with recombinant baculovirus vectors expressing the G25K cDNA produced a 25-kDa protein that bound GTP and was recognized by antibodies specifically reactive to G25K. G25K appears to be the human homolog of the CDC42 gene product, since expression of the G25K cDNA in S. cerevisiae suppressed both cdc42-1 and cdc24-4 temperature-sensitive lethal mutations.  相似文献   

19.
Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of beta1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in beta1 integrin-null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in beta1 integrin-null nerves improves sorting. Thus, increased activation of Rac1 by beta1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.  相似文献   

20.
Rac GTPases act as molecular switch in various morphogenic events. However, the regulation of their activities during the development of multicellular organisms is not well understood. Caenorhabditis elegans rac genes ced-10 and mig-2 have been shown to act redundantly to control P cell migration and the axon outgrowth of D type motoneurons. We showed that ced-10 and mig-2 also control amphid axon outgrowth and amphid dendrite fasciculation in a redundant fashion. Our biochemical and genetic data indicate that unc-73, which encodes a protein related to Trio-like guanine nucleotide exchange factor, acts as a direct activator of ced-10 and mig-2 during P cell migration and axon outgrowth of D type motoneurons and amphid sensory neurons. Furthermore, rac regulators ced-2/crkII and ced-5/dock180 function genetically upstream of ced-10 and mig-2 during axon outgrowth of D type motoneurons and act upstream of mig-2 but not ced-10 during P cell migration. However, neither ced-2/crkII nor ced-5/dock180 is involved in amphid axon outgrowth. Therefore, distinct rac regulators control ced-10 and mig-2 differentially in various cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号