首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (V, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (c) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component, which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties.  相似文献   

2.
Membrane potential responses of a ciliate protozoan Paramecium caudatum to the external application of quinine were investigated in relation to its motile activities. Wild-type specimens swimming in the reference solution did not enter into a quinine-containing (0.5 mM) test solution due to avoiding responses exhibited at the border between the two solutions, and therefore stayed in the reference solution (chemodispersal). Squirting of a quinine-containing test solution over a wild-type specimen evoked a train of action potentials superimposed on a depolarizing chemoreceptor potential. Squirting of a quinine-containing test solution over a CNR-mutant specimen defective in voltage-gated Ca2+ channel evoked only chemoreceptor potentials, which consisted of an initial transient depolarization, a following transient hyperpolarization and a sustained depolarization. A current-evoked action potential became larger in its amplitude and longer in its duration with the external application of quinine. Under the voltage-clamp condition, the fast inward current did not change whereas the delayed outward current decreased with the external application of quinine. It is concluded that quinine is a potent repellent for Paramecium because it produces a depolarizing chemoreceptor potential which evokes action potentials and prolongs the duration of the action potential.  相似文献   

3.
The electrophysiological properties of a hormone-dependent, differentiated thyroid epithelial cell strain were studied using intracellular microelectrodes. The average membrane potential of solitary, isolated cells was –78.4 ± 1.3 mV. The membrane potential depolarized 55 mV per tenfold increase in extracellular potassium concentation. Weak electrical coupling was recorded between contiguous cells. Like tyroid cells in vivo, these cells did not generate action potentials. In some cells a spontaneous, slow transition in the membrane potential from –80mV to –30 mV was accompanied by an increase in input resistance. Membrane potential transitions could be induced by perfusing cells with isotonic Hanks solutions saturated with CO2 (pH = 5.5) or by perfusing cells with hypotonic Hanks solutions (190–290 mOsm/kg). Membrane potential transitions were due to a decreased potassium permeability. Noradrenaline elicted both a fast depolarization and a slow depolarization. The fast depolarization was due to an increase in conductance of Na+ channels and of Cl channels. Intracellular injection of Ca++ elicited the fast depolarization. Intracellular injection of EGTA or cobalt abolished the fast depolarization. Replacemnt of extracellular Ca++ by Mg++ did not affect the fast depolarization. Thus, the fast depolarization was due to accumulation of intracellular Ca++. The fast depolarization was abolished by the alpha adrenergic blocker phentolamine (10–6 M), and was not abolished by the beta adrenergic blocker propranolol (10–5 M).  相似文献   

4.
Summary Smooth muscle cells normally do not possess fast Na2+ channels, but inward current is carried through two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Using whole-cell voltage clamp of single smooth muscle cells isolated from the longitudinal layer of 18-day pregnant rat uterus, depolarizing pusles, applied from a holding potential of –90 mV, evoked two types of inward current, fast and slow [8]. The fast inward current decayed within 30 ms, depended on [Na]0, and was inhibited by TTX (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]0, and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na2+ channel current, and that the slow inward current is a Ca2+ channel current was not evident. Thus, the ion channels which generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihudropuridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation [9]. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells which possess fast Na2+ channels, and it suggested that the fast Na+ current may be involved in spread of excitation. The Ca2+ channel current density also was higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and may facilitate parturition. Isoproterenol (beta-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 of 12 mM) and nifedipine (K0.5 of 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extect. Therefore, the tocolytic action of beta-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions is not due to stimulation of ICa(s).  相似文献   

5.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

6.
Genetic Na channelopathies and sinus node dysfunction   总被引:1,自引:1,他引:0  
Voltage-gated Na+ channels are transmembrane proteins that produce the fast inward Na+ current responsible for the depolarization phase of the cardiac action potential. They play fundamental roles in the initiation, propagation, and maintenance of normal cardiac rhythm. Inherited mutations in SCN5A, the gene encoding the pore-forming α-subunit of the cardiac-type Na+ channel, result in a spectrum of disease entities termed Na+ channelopathies. These include multiple arrhythmic syndromes, such as the long QT syndrome type 3 (LQT3), Brugada syndrome (BrS), an inherited cardiac conduction defect (CCD), sudden infant death syndrome (SIDS) and sick sinus syndrome (SSS). To date, mutational analyses have revealed more than 200 distinct mutations in SCN5A, of which at least 20 mutations are associated with sinus node dysfunction including SSS. This review summarizes recent findings bearing upon: (i) the functional role of distinct voltage-gated Na+ currents in sino-atrial node pacemaker function; (ii) genetic Na+ channelopathy and its relationship to sinus node dysfunction.  相似文献   

7.
The effects of creatine phosphate on frog heart muscle contraction have been studied further. It has been shown that after inhibition of mitochondrial oxidative phosphorylation by sodium cyanide the frog heart ventricle contraction can be maintained at a high level by addition of creatine phosphate. The effect of creatine phosphate on the contractile force and action potential is similar for frog heart ventricle and atrium. It has been directly demonstrated by using the voltage-clamp technique that creatine phosphate controls the slow inward calcium current through the surface membrane of frog atrium cells.  相似文献   

8.
1. The cardiac pacemaker cells of the frog Caudiverbera caudiverbera are centrally located in the sinus venosus. These cells are rounded, smaller than contractile fibres and have large nuclei. 2. Intracellular recording confirmed the existence of primary and transitional pacemaker cells. 3. Action potentials from primary cells were resistant to blockade by tetrodotoxin (TTX), but were abolished by verapamil suggesting that their bioelectric activity is dependent on a slow inward current. 4. Transitional cells appeared to have two different inward currents contributing to the upstroke: a fast TTX-sensitive and a slow verapamil-sensitive current.  相似文献   

9.
Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores.  相似文献   

10.
Outward sodium current in beating heart cells.   总被引:5,自引:5,他引:0       下载免费PDF全文
This article is a study of the fast Na current during action potentials. We have investigated the outward Na current (Mazzanti, M., and L.J. DeFelice. 1987. Biophys. J. 52:95-100) in more detail, and we have asked whether it goes through the same channels associated with the rapid depolarization phase of action potentials. We address the question by patch clamping single, spontaneously beating, embryonic chick ventricle cells, using two electrodes to record the action potential and the patch current simultaneously. The chief limitation is the capacitive current, and in this article we describe a new method to subtract it. Varying the potential and the Na concentration in the patch pipette, and fitting the corrected currents to a standard model (Ebihara, L., and E.A. Johnson. 1980. Biophys. J. 32:779-790), provides evidence that the outward current is carried by the same channels that conduct the inward current. We compare the currents in beating cells to currents in nonbeating cells using whole-cell and cell-attached patch clamp recordings. The latter tend to show more positive Na reversal potentials, with the implication that internal Na is higher in beating cells. We propose that the plateau of the action potential, which is partly due to an inward Ca current, exceeds Na action current reversal potentials, and that this driving force gives rise to an outward movement of Na ions. The existence of such a current would imply that the fast repolarization phase after the upstroke of cardiac action potentials is partly due to the Na action current.  相似文献   

11.
Membrane potential-current and mechanical tension of frog atrial muscle were studied in a Ca and Mg-free solution containing 1 mmol/l EGTA (Ca-free solution). Exposure to Ca-free solution resulted in a shortening of action potential duration within 1.5 min and a subsequent lengthening which were paralleled by changes in magnitude and duration of the contraction. Similarly, the slow inward current quickly disappeared and progressively reappeared with a quite slower inactivation time-course. Its reversal potential varied with [Na]0 as for a pure Na current. By 12 min in Ca-free solution, the tension-voltage relation could be interpreted as the sum of two components correlated with the slow inward current and the membrane potential respectively. Contractures in response to sustained large depolarizations had similar time courses in Ca-free solution and Ringer's containing Na-Ca exchange blockers (Mn2+ 15 mmol/l or La3+ 3 mmol/l). Intracellular Na loading by voltage-clamp depolarizations (40 mV from the resting potential for 100 ms, at 0.2 Hz) in the presence of Veratrine (7.5 X 10(-6) g/ml) caused a large progressive increase in tonic tension. An intracellular Ca2+ release is invoked, partly related to Na+ entry and partly to membrane potential changes. The potential dependent part could be influenced by intracellular Na+.  相似文献   

12.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

13.
Electrical properties of developing rat heart. Effects of dexamethasone   总被引:1,自引:0,他引:1  
Action potentials recorded from perinatal rat ventricles exhibited a plateau (phase 2), followed by a rapid repolarization characteristics of all mammalian ventricular cells. Within the second postnatal week, a number of distinct changes occurred in the contour of action potentials. An early slow depolarization, at the foot of the action potential, preceded the beginning of phase zero. The early slow depolarization was observed until day 12 and disappeared by day 13. A second slow depolarization occurred during the terminal phase of the rapid upstroke of the action potential, persisted through day 13 and disappeared by day 14. On day 12, what had been a homogeneous contour of action potentials seen during the first week converted into a heterogeneous contour. Occasionally, action potentials similar to those recorded from Purkinje fibres in adult heart were recorded from hearts as young as 12 days. By day 14, signs of a spike (the hallmark of action potentials from adult heart) were apparent in some fibres. Treatment of newborn rats with dexamethasone on the second day after birth prevented the disappearance of the second slow depolarization. In adult and aged rat hearts, dexamethasone treatment induced a slow depolarization and a plateau in the region of overshoot. In view of the time-dependent change of the second slow depolarization it is suggested that this phase of the action potential is influenced by the levels of circulating glucocorticoid in developing heart and by changes in calcium sensitivity observed in this species. Heterogeneity of action potentials observed on day 12 postnatal may precede structural differentiation of myofilaments.  相似文献   

14.
The decline of calcium inward currents evoked by a long-lasting membrane depolarization was studied on isolated snail neurons internally perfused with a K+-free solution. Two exponential components superimposed on a steady inward current could be distinguished, a slow decline with a time constant of several hundreds of milliseconds, observed at all the testing potentials used, and a fast one with a time constant of several dozens of milliseconds, which appeared at depolarizations to about -10 mV and above. When the calcium current was blocked by extracellular Cd2+ or verapamil, an outward current could be recorded at the same depolarizations. Subtraction of the latter current from the total current, recorded prior to the blockage, largely reduced the fast component of the decline of the total current. An increase in pHi from 7.3 to 8.1 led to the elimination of both the outward current and the fast component of the calcium current decline. The slow component remained practically unchanged, with its rate depending upon the current amplitude. It was slowed following intracellular administration of EDTA, and after equimolar substitution of Ba2+ for Ca2+. It is concluded that the fast component of the calcium inward current decline is mainly due to the superposition of the outward current produced by low selective channels. Only the slow component represents an actual decline of the inward current through calcium channels; it is due to ion accumulation at the inner surface of the cell membrane.  相似文献   

15.
Summary Electrophysiological experiments showed that a tetrodotoxin (TTX) sensitive slowly inactivating Na+ current contributed to the excitability of the sensory neuron (SN1) that innervates the slow receptor muscle in the abdominal muscle receptor (MR1) of crayfish, Procambarus clarkii. Following either tetraethylammonium (TEA) blockage of the K+ delayed rectifier currents or exposure to high temperature, a depolarizing plateau potential was evoked by the slow Na+ current. Ca++ substitution by other divalent cations had no effect on the plateau potential, demonstrating that Ca++ is not involved in plateau potential genesis. Simultaneous intrasomatic and extraaxonic recordings coupled with 4-aminopyridine (4-AP) exposure indicated that the slowly inactivating Na+ current is primarily somatic, and does not contribute significantly to spiking.Abbreviations 4-AP 4-aminopyridine - HAP hyperpolarizing after-potential - MR1 slowly adapting muscle receptor organ - SR1 sensory neuron of MR1 - TEA tetraethylammonium - TTX tetrodotoxin  相似文献   

16.
The electrophysiological and pharmacological properties of aggregates prepared from cells of 7-day-old chick embryo heart ventricles depend on the enzyme used for cell dissociation. The mean beat rate of aggregates formed from trypsin-dissociated cells was about 53 beats/min whereas aggregates formed from collagenase-dissociated cells had a mean beat rate of more than twice this value. Spontaneous activity of most aggregates formed from trypsin-dissociated cells was inhibited by elevating external potassium or by adding tetrodotoxin to the medium. A similar response to potassium was seen in all aggregates formed from collagenase-dissociated cells. However, approximately half of the aggregates formed from collagenase-dissociated cells were tetrodotoxin insensitive. Intracellular microelectrode recordings demonstrated that aggregates formed from collagenase-dissociated cells typically had reduced action potential maximal upstroke velocities and depolarized threshold potentials in comparison to those recorded from aggregates formed from trypsin-dissociated cells. In the presence of tetrodotoxin the maximal upstroke velocity of aggregates formed from either collagenase- or trypsin-dissociated cells decreased markedly. In the case of the collagenase-treated cells, the spontaneous activity which persisted in the presence of tetrodotoxin was abolished by the slow channel blocker D-600. Computer simulation of membrane depolarization supports the view that aggregates formed from collagenase-treated cells have a reduced fast inward sodium current and a significant leakage current. Aggregates prepared from trypsin-dissociated cells display properties which more closely resemble those of intact 7-day embryonic ventricular tissue. We therefore conclude that, contrary to previous reports, collagenase is not the enzyme necessarily best suited for cell dissociation in all tissue culture studies.  相似文献   

17.
Summary The inward membrane current was recorded under voltage clamp from nonbursting neurons of the snailHelix pomatia in Na-free solutions containing Ba ions but no other divalent cations. The inward current was separated into two components: (i) an early fast inactivating component and (ii) a smaller long-lasting component. Both components were dependent on the external Ba concentration. It is concluded that both components of the inward current are carried by Ba ions. The activation of the early fast inactivating component of the inward current occurred at more positive membrane potential than that of the long-lasting component. The shape of the inactivation curve for the peak value of the inward current was similar to that for the long-lasting component. The potentials of half-inactivation for the peak value of the inward current and for its long-lasting component were –28 and –22 mV, respectively. The blocking effect of Co++ on the early fast inactivating component was substantially greater. In some neurons after treatment with 15mm Co++ only the long-lasting component was recorded. The activation kinetics of the long-lasting component of the inward current were analyzed using the Hodgkin-Huxley equations. The results could be explained by assuming that two components of the inward current in Na–Ca-free solution with Ba ions flowed through the two different channels. The significance of the long-lasting inward current for the normal spike generation is discussed.  相似文献   

18.
The crustacean single nerve fiber gives rise to trains of impulses during a prolonged depolarizing stimulus. It is well known that the alkaloid veratrine itself causes a prolonged depolarization; and consequently it was of interest to investigate the effect of this chemically produced depolarization on repetitive firing in the single axon and compare it with the effect of depolarization by an applied stimulating current or by a potassium-rich solution. It was found that veratrine depolarization, though similar in some respects to a potassium-rich depolarization of depolarizing current effect, was in many respects quite different. (1) At low veratrine concentration, less than 1 Mg%, the negative after potential following a spike action potential was prolonged and augmented. At higher concentrations or after a long period of time, veratrine caused a prolonged steady state depolarization of the membrane, the “veratrine response”. The prolonged plateau depolarization response could be elicited with or without an action potential spike by a short or long duration stimulating pulse, but only if the veratrine depolarization was prevented or offset by an applied conditioning hyperpolarizing inward current. (2) The “veratrine response” resembled the potassium-rich solution response in the plateau-like contour of the depolarization and the very low membrane resistance during this plateau phase. Like the potassium response, it was possible to obtain a typical hyperpolarizing response with an inwardly directed current pulse if applied during the plateau phase. During the negative after potential augmented with veratrine, however, this hyperpolarizing response was not observed. (3) In contrast to the potassium response, however, the “veratrine response” is intimately associated with the sodium concentration in the external medium. The depolarization in millivolts is linearly related to the log of the concentration of external sodium. Moreover, during veratrine action there is a continuous and progressive inactivation of the sodium mechanism which ultimately terminates repetitive firing and abolishes the spike action potential. Then even with conditioning hyperpolarization only the slow response may be elicited in veratrine, occasionally with a spike superimposed if sodium is present, but without repetitive firing. (4) It is concluded that veratrine action is the result of a chemical or metabolic reaction by the alkaloid in the membrane. It is suggested that veratrine may inhibit the sodium extrusion mechanism, or may itself compete for sites in the membrane with calcium and/or sodium. This explains the inhibiting effect of high calcium, the abolition of the “veratrine response” with low temperature and high calcium combined and the progressive inactivation of the sodium system.  相似文献   

19.
Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+-free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+]i). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+]i. These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.  相似文献   

20.
Depolarization-activated and hyperpolarization-activated ion conductances in the membrane of a marine dinoflagellateNoctiluca miliaris were examined under voltage-clamp conditions.Noctiluca exhibited a transient inward current in response to a step depolarization from a holding potential level of –80 mV to a potential level more positive than –50 mV. The I–V relationship for the current exhibited typical N-shaped characteristics similar to those of most excitable membranes. The current was inactivated by a membrane depolarization. The reversal potential of the current shifted in hyperpolarizing direction when the external Na+ concentration was lowered. The transient inward current is assumed to be responsible for the Na+-dependent positive spike in non-clamped specimens ofNoctiluca.Noctiluca exhibited a transient outward current in response to a step hyperpolarization from a holding potential level of –20 mV to a potential level more negative than –30 mV. The I–V relationship for the current was a typical N-shape as if it was turned 180° around its origin. The outward current showed a two-step exponential time-decay. The outward current was inactivated by a membrane hyperpolarization. The reversal potential shifted in the depolarizing direction when the external Cl concentration was lowered. The transient outward current is responsible for the Cl-dependent negative spike in non-clamped specimens ofNoctiluca.Abbreviations ASW artificial seawater - TRP tentacle regulating potentials - TTX tetrodotoxin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号