首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specification of the most anterior and posterior domains of the Drosophila embryo depends on the activity of the torso protein, a putative tyrosine kinase receptor. Localized torso activity at the poles of the embryo generates graded information that specifies distinct portions of the body. The primary response to the terminal signal in the posterior end of the embryo is likely to be the activation of the gap genes huckebein and tailless. Here I address the question of how the graded maternal signal generates different elements of the pattern at the posterior end of the embryo and what role huckebein and tailless activities may play in this process. These experiments show that distinctly localized activities of huckebein and tailless are responsible for the appropriate expression of other genes known to be under the control of the terminal system. Moreover, they suggest that different elements of the terminal pattern can be specified in response to distinct levels of graded tailless activity.  相似文献   

2.
Cell fates in the anterior and posterior termini of the Drosophila embryo are programmed by multiple zygotic genes that are regulated in response to a maternally encoded signal transduction pathway. These genes specify terminal as distinct from central cell fates, program pattern along the anteroposterior and dorsoventral axes of the termini, and also control endoderm specification and terminal morphogenetic movements. Here, we use a genetic interaction test to dissect the zygotic components of the terminal genetic hierarchy. We show that two genes, lines and empty spiracles, act downstream of tailless to repress central and promote terminal cell fates along the anteroposterior axis of the termini. Genes that control dorsoventral pattern in the termini and genes that program terminal morphogenesis act in distinct branches of the genetic hierarchy that are independent of tailless.  相似文献   

3.
4.
The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as a morphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal 'dorsal group' genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactus function results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus alleles. In contrast to the loss-of-function alleles, gain-of-function alleles of cactus cause a dorsalization of the embryonic pattern. Genetic studies indicate that they are not overproducers of normal activity, but rather synthesize products with altered function. Epistatic relationships of cactus with dorsal group genes were investigated by double mutant analysis. The dorsalized phenotype of the dorsal mutation is unchanged upon loss of cactus activity. This result implies that cactus acts via dorsal and has no independent morphogen function. In all other dorsal group mutant backgrounds, reduction of cactus function leads to embryos that express ventrolateral pattern elements and have increased nuclear uptake of the dorsal protein at all positions along the dorsoventral axis. Thus, the cactus gene product can prevent nuclear transport of dorsal protein in the absence of function of the dorsal group genes. Genetic and cytoplasmic transplantation studies suggest that the cactus product is evenly distributed along the dorsoventral axis. Thus the inhibitory function that cactus product exerts on the nuclear transport of the dorsal protein appears to be antagonized on the ventral side. We discuss models of how the action of the dorsal group genes might counteract the cactus function ventrally.  相似文献   

5.
At least 13 genes control the establishment of dorsoventral polarity in the Drosophila embryo and more than 30 genes control the anteroposterior pattern of body segments. Each group of genes is thought to control pattern formation along one body axis, independently of the other group. We have used the expression of the fushi tarazu (ftz) segmentation gene as a positional marker to investigate the relationship between the dorsoventral and anteroposterior axes. The ftz gene is normally expressed in seven transverse stripes. Changes in the striped pattern in embryos mutant for other genes (or progeny of females homozygous for maternal-effect mutations) can reveal alterations of cell fate resulting from such mutations. We show that in the absence of any of ten maternal-effect dorsoventral polarity gene functions, the characteristic stripes of ftz protein are altered. Normally there is a difference between ftz stripe spacing on the dorsal and ventral sides of the embryo; in dorsalized mutant embryos the ftz stripes appear to be altered so that dorsal-type spacing occurs on all sides of the embryo. These results indicate that cells respond to dorsoventral positional information in establishing early patterns of gene expression along the anteroposterior axis and that there may be more significant interactions between the different axes of positional information than previously determined.  相似文献   

6.
S Roth  D Stein  C Nüsslein-Volhard 《Cell》1989,59(6):1189-1202
The dorsoventral axis of the Drosophila embryo is determined by a morphogen gradient established by the action of 12 maternal-effect genes: the dorsal group genes and cactus. One of the dorsal group genes, dorsal (dl), encodes the putative morphogen. Although no overall asymmetry in the distribution of dorsal protein is observed, a gradient of nuclear concentration of dl protein is established during cleavage stages, with a maximum at the ventral side of the egg. At the dorsal side of the egg, the protein remains in the cytoplasm. Nuclear localization of the dl protein, and hence gradient formation, is blocked in dorsalizing alleles of all of the other dorsal group genes, while in ventralizing mutants nuclear localization extends to the dorsal side of the egg. A correlation between dl protein distribution and embryonic pattern in mutant embryos indicates that the nuclear concentration of the dl protein determines pattern along the dorsoventral axis.  相似文献   

7.
Twelve maternal effect loci are required for the production of Drosophila embryos with a correct dorsoventral axis. Analysis of mosaic females indicates that the expression of the genes nudel, pipe, and windbeutel is required in the somatic tissue, presumably in the follicle cells that surround the oocyte. Thus, information coming from outside the egg cell influences dorsoventral pattern formation during embryogenesis. In transplantation experiments, the perivitelline fluid from the compartment surrounding the embryo can restore dorsoventral pattern to embryos from females mutant for nudel, pipe, or windbeutel. The positioning of the transplanted pervitelline fluid also determines the polarity of the restored dorsoventral axis. We propose that the polarizing activity, normally present at the ventral side of the egg, is a ligand for the Toll receptor. Presumably, local activation of the Toll protein by the ligand initiates the formation of the nuclear concentration gradient of the dorsal protein, thereby determining dorsoventral pattern.  相似文献   

8.
9.
The spatial and temporal pattern of mitoses during the fourteenth nuclear cycle in a Drosophila embryo reflects differences in cell identities. We have analysed the domains of mitotic division in zygotic mutants that exhibit defects in larval cuticular pattern along the dorsoventral axis. This is a powerful means of fate mapping mutant embryos, as the altered position of mitotic domains in the dorsoventral pattern mutants correlate with their late cuticular phenotypes. In the mutants twist and snail, which fail to differentiate the ventrally derived mesoderm, mitoses specific to the mesoderm are absent. The lateral mesectodermal domain shows a partial ventral shift in twist mutants but a proportion of ventral cells do not behave characteristically, suggesting that twist has a positive role in the establishment of the mesoderm. In contrast, snail is required to repress mesectodermal fates in cells of the presumptive mesoderm. In the absence of both genes, the mesodermal and the mesectodermal anlage are deleted. Mutations at five loci delete specific pattern elements in the dorsal half of the embryo and cause partial ventralization. Mutations in the genes zerknüllt and shrew affect cell division only in the dorsalmost cells corresponding to the amnioserosa, while the genes tolloid, screw and decapentaplegic (dpp) affect divisions in both the prospective amnioserosa and the dorsal epidermis. We demonstrate that in each of these mutants dorsally placed mitotic domains are absent and this effect is correlated with an expansion and dorsal shift in the position of more ventral domains. The loss of activity in each of the five genes results in qualitatively similar alterations in the mitotic pattern; mutations with stronger ventralizing phenotypes affect increasingly greater subsets of the dorsal cells. Double mutant analysis indicates that these genes act in a concerted manner to specify dorsal fates. The correlation between phenotypic strength and the progressive loss of dorsal pattern elements in the ventralized mutants, suggests that one of these gene products, perhaps dpp, may provide positional information in a graded manner.  相似文献   

10.
11.
12.
13.
14.
The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.  相似文献   

15.
T Schüpbach 《Cell》1987,49(5):699-707
Mutations in gurken and torpedo cause a ventralization in the follicle cell epithelium during Drosophila oogenesis and in the pattern of the embryo that develops in the resultant egg. Both genes lie midway in an epistatic series between fs(1)K10 and dorsal; the mutations block the dorsalization normally observed in K10 eggs but have no effect on the phenotype of embryos derived from dorsal mothers. Analysis of germ-line mosaics demonstrates that both ovarian and embryonic phenotypes will be produced when either the gurken+ gene is removed from the germ line or torpedo+ is removed from the soma. This shows that the dorsoventral pattern of the Drosophila egg chamber depends on the transfer of spatial information from the germ line to the somatic follicle cells, and from somatic cells to the oocyte.  相似文献   

16.
R. Terracol  J. A. Lengyel 《Genetics》1994,138(1):165-178
We have discovered a new member of the class of genes controlling embryonic dorsoventral patterning. Mutants of the thick veins (tkv) gene have been described previously (as slater alleles) as embryonic lethal, lacking dorsal epidermis, but not as showing a recognizable dorsoventral phenotype. We show here that maternal alteration of function coupled with zygotic reduction of function of tkv is strongly ventralizing. In addition, in double heterozygous combinations in the mother, tkv mutations increase the ventralizing effect of dominant, weakly ventralizing alleles of the maternal effect, dorsoventral genes easter and cactus. An interaction is also seen with zygotic dorsoventral genes: tkv interacts maternally and zygotically in double heterozygotes with decapentaplegic and zygotically with screw in double homozygotes. We conclude that both maternally and zygotically supplied wild-type tkv product can play a role in dorsoventral patterning of the early embryo. On the basis of the phenotype of trans-heterozygous adult escapers, we propose that tkv might act by potentiating the activity of the zygotically acting decapentaplegic gene.  相似文献   

17.
18.
19.
We have analyzed the contributions made by maternal and zygotic genes to the establishment of the expression patterns of four zygotic patterning genes: decapentaplegic (dpp), zerknüllt (zen), twist (twi), and snail (sna). All of these genes are initially expressed either dorsally or ventrally in the segmented region of the embryo, and at the poles. In the segmented region of the embryo, correct expression of these genes depends on cues from the maternal morphogen dorsal (dl). The dl gradient appears to be interpreted on three levels: dorsal cells express dpp and zen, but not twi and sna; lateral cells lack expression of all four genes; ventral cells express twi and sna, but not dpp and zen. dl appears to activate the expression of twi and sna and repress the expression of dpp and zen. Polar expression of dpp and zen requires the terminal system to override the repression by dl, while that of twi and sna requires the terminal system to augment activation by dl. The zygotic expression patterns established by the maternal genes appear to specify autonomous domains that carry out independent developmental programs, insofar as mutations in the genes that are expressed ventrally do not affect the initiation or ontogeny of the expression patterns of the genes that are expressed dorsally, and vice versa. However, interactions between the zygotic genes specific to a particular morphological domain appear to be important for further elaboration of the three levels specified by dl. Two of the genes, dpp and twi, are unaffected by mutations in any of the tested zygotic dorsal-ventral genes, suggesting that dpp and twi are the primary patterning genes for dorsal ectoderm and mesoderm, respectively.  相似文献   

20.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号