首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid-state production of endo- and exo-polygalacturonases (PG) by Aspergillus niger was studied in a media containing wheat bran, salts, and different citric pectin and/or glucose concentrations. Kinetic analysis of the process indicated that the formation of PG and the growth of A. niger are associated processes. By increasing citric pectin from 0 to 16% (w/w), the maximum A. niger concentration (X m) was raised from 94 to 121 mg/g dry medium suggesting that pectin can be used by A. niger as a growth substrate besides its role as an inducer. With 16% (w/w) pectin, 281 U exo-PG/gdm and 152 U endo-PG/gdm were obtained. Otherwise, pectin concentrations from 20 to 30% (w/w) hindered both production and growth. A. niger concentrations of 108–113 mg/gdm were achieved in runs with glucose from 5 to 12% (w/w), whereas at 16 and 20% (w/w) glucose, lower X m values (ca. 100 mg/gdm) were measured. The addition of glucose to the wheat bran medium, up to 10% (w/w) led to maximum endo-PG titers slightly lower than those found in the absence of glucose. Nevertheless, exo-PG formation in these media was strongly increased and activities over 370 U/gdm were achieved. The results suggest that in experiments with pectin concentrations until 16% (w/w), exo-PG production was repressed by pectin-degradation products although these same substances had favored biomass growth. When glucose concentrations over 10% (w/w) were added to the media, the maximum activities of both enzymes decreased drastically, suggesting that glucose at high concentrations also exerts a repressive effect on PG production.  相似文献   

2.
A salt-tolerant alkaliphilic actinomycete (strain Mit-1) was isolated from Mithapur (Western Coast, Gujarat, India) and identified as Streptomyces clavuligerus. Based on 16S rRNA gene sequence (EU146061) homology, it was found to be related to Streptomyces sp. (AY641538.1). The strain secreted alkaline protease optimally at 5% NaCl and pH 9 during the early stationary phase and could utilize the amino acids methionine, alanine, leucine, phenylalanine, tyrosine, tryptophan, arginine, asparagine, histidine, and glutamic acid as the sole source of nitrogen. Above their threshold levels, these amino acids caused repression of alkaline protease production. Protease production with methionine (120 U/mL), histidine (140 U/mL), and aspartic acid (118 U/mL) was comparable to that with complex medium (130 U/mL). However, the production increased with an increasing number of different amino acids in the growth medium. Repression of protease production as influenced by the amino acids generated valuable information on enzyme synthesis in actinomycetes, as such data is scarce. Optimization of the conditions for enzyme production by actinomycetes in general, and in haloalkaliphilic actinomycetes in particular, appears to be an attractive proposition for biocatalysis.  相似文献   

3.
Zhou JM  Ge XY  Zhang WG 《Bioresource technology》2011,102(21):10085-10088
Catabolic repression in the synthesis of inducible enzymes by glucose, fructose, and intermediates of the glycolytic cycle has been observed in many microorganisms. In order to enhance the polygalacturonase (PG) production of Aspergillus niger GJ-2, Saccharomyces cerevisiae J-1 was inoculated to the medium at 12 h of culture, which resulted in a significant improvement of PG production. It was also found that maximum PG activity of 512.7 U/ml was obtained at 37 °C in the mixed culture, which was nearly twofold higher than that of the culture without the inoculation of S. cerevisiae J-1.  相似文献   

4.
Kestutis J. Tautvydas 《Planta》1978,140(3):213-220
Mucilage and colony walls of E. californica were separated from the cells by homogenization, filtration, and differential centrifugation. The chief components of the mucilage were a high-molecular-weight (MW) hydroxyproline-rich glycoprotein and a very high-MW polysaccharide in the proportions 47% and 34%, respectively. The glycoprotein consisted of galactose, arabinose, xylose and an unidentified neutral sugar; and the amino acids cysteine, aspartic acid, glutamic acid, arginine, lysine, glycine, serine, methionine, histidine, alanine, proline, hydroxyproline, tyrosine, threonine, valine, phenylalanine, isoleucine and leucine. The principal sugar of the polysaccharide was mannose. The chemical composition of the colony walls was essentially the same as that of the glycoprotein in the mucilage except that there was almost twice as much hydroxyproline. Also the protein content of the colony walls was 34% while that of the glycoprotein in the mucilage was 22%. No glucose, sugar acids or nucleic acids were found in the extracellular matrix.  相似文献   

5.
The synthesis and release of alanine and glutamine have been studied in the intact rat epitrochlaris skeletal muscle preparation. Aspartate, cysteine, leucine, valine, methionine, isoleucine, serine, theronine, and glycine increased significantly the formation and release of alanine from muscle. Cysteine, leucine, valine, methionine, isoleucine, tyrosine, lysine, and phenylalanine increased the rate of glutamine synthesis. Only ornithine, arginine, and tryptophan were without effect on the synthesis of either alanine or glutamine. Half-maximal stimulation of alanine and glutamine formation by added amino acids was observed with concentrations ranging between 0.5 and 1.0 mM. Increases in alanine and glutamine formation were not accompanied by changes in pyruvate production or glucose uptake. The progressive decline in alanine and glutamine synthesis noted on prolonged incubation was prevented by the addition of amino acids to the incubation medium. Stimulation of alanine synthesis by added amino acids was unaffected by inhibition of glycolysis with iodoacetate. Inhibition of alanine aminotransferase with aminooxyacetate significantly decreased alanine formation. Pyruvate and ammonium chloride did not increase further the rate of either alanine or glutamine formation above that produced by added amino acids. These data indicate that most amino acids are precursors for alanine and glutamine synthesis in skeletal muscle. A general mechanism is presented for the de novo formation of alanine from amino acids in skeletal muscle, and the importance of proteolysis for the supply of amino acid precursors for alanine and glutamine synthesis is discussed.  相似文献   

6.
Summary Carbon and nitrogen sources were investigated for improving peroxidase production by Arthromyces ramosus, a hyperproducer of peroxidase. Glucose as carbon source and a mixture of yeast extract and polypeptone at the ratio of 3 to 5 as nitrogen source in a production medium were shown to give the highest peroxidase activity. During the culture amino acids such as alanine, arginine, methionine, leucine, tyrosine and tryptophan were depleted. Therefore, glucose supplemented nitrogen source fed-batch culture was carried out and a peroxidase activity of 73 U/ml was obtained. This activity was 1.7 times higher than that of glucose fed-batch culture. This indicates that an adequate nitrogen source supply during the culture is effective for improving the peroxidase production by A. ramosus.  相似文献   

7.
Optimum conditions for the growth ofPseudomonas arvilla, a hydrocarbon utiliser, have been studied. The microorganism produced economic cell yield at pH 5.7 and 4% kerosene concentration. C10-C16 hydrocarbons were utilised by the strain. The growth was maximum on n-decane. Supplementation of the hydrocarbon medium with 0.5% glucose stimulated the growth. Glutamic acid 16.0 mg; leucine 9.0 mg; valine 10.0 mg; methionine 2.5 mg; arginine 2.5 mg; histidine 1.0 mg were present in 100 ml of the broth. Cell protein contained leucine 13.69%, isoleucine 4.9%, histidine 4.37%, tryptophan 2.33%, methionine 1.8% and arginine 2.70%.  相似文献   

8.
The effect of changing cell volume on rat mammary protein synthesis has been examined. Cell swelling, induced by a hyposmotic challenge, markedly increased the incorporation of radiolabelled amino acids (leucine and methionine) into trichloroacetic acid (TCA)-precipitable material: reducing the osmolality by 47% increased leucine and methionine incorporation into mammary protein by 147 and 126% respectively. Conversely, cell shrinking, induced by a hyperosmotic shock, almost abolished the incorporation of radiolabelled amino acids into mammary protein: increasing the osmolality by 70% reduced leucine and methionine incorporation into mammary protein by 86 and 93% respectively. The effects of cell swelling and shrinking were fully reversible. Volume-sensitive mammary tissue protein synthesis was dependent upon the extent of the osmotic challenge. Isosmotic swelling of mammary tissue, using a buffer containing urea (160 mM), increased the incorporation of radiolabelled leucine into TCA-precipitable material by 106%. Swelling-induced mammary protein synthesis was dependent upon calcium: removing extracellular calcium together with the addition of EGTA markedly reduced volume-activated protein synthesis. Cell swelling-induced protein synthesis was inhibited by the Ca(2+) ATPase blocker thapsigargin suggesting that volume-sensitive protein synthesis is dependent upon luminal calcium.  相似文献   

9.
Proteasome inhibitors are novel potential drugs for therapy of many diseases, and their effects are not fully understood. We investigated direct effects of peptide vinylsulfone inhibitor AdaAhx3L3VS on protein and amino acids metabolism in rat skeletal muscle. Soleus and extensor digitorum longus muscles were incubated in a medium containing 30 micromol/l AdaAhx3L3VS or no inhibitors. Total proteolysis was determined according to the rates of tyrosine release into the medium during incubation. The rates of leucine oxidation and protein synthesis were evaluated during incubation in medium containing L-[1-14C]leucine. Amino acid concentrations in the medium were measured using HPLC. AdaAhx3L3VS decreased tyrosine release into the medium by 21 and 19 %, decreased leucine incorporation into proteins by 22 and 12 %, and increased leucine oxidation by 24 and 19 % in soleus and extensor digitorum longus muscles, respectively. The release of amino acids into the medium was reduced. We conclude that AdaAhx3L3VS significantly decreased proteolysis and protein synthesis and increased leucine oxidation.  相似文献   

10.
Summary ACN-hydratase inArthrobacter sp. IPCB-3 has been found to be induced by acetonitrile and urea and repressed by glucose. When acetonitrile was used as an inducer the synthesis of enzyme increased to about 2 folds and 4.5 folds on addition of iron and cobalt to the medium, respectively. However, when urea was used as an inducer only cobalt stimulated the enzyme synthesis and gave maximum activity (70 units/mg dry cells). In contrast to the stimulation of iron containing ACN-hydratase, yeast extract failed to stimulate further the synthesis of cobalt containing enzyme irrespective of the inducer present in the medium.  相似文献   

11.
Summary The enzymeN 5-methyltetrahydrofolate: homocysteine methyltransferase (methionine synthetase) catalyzes the synthesis of methionine from homocysteine. Methylcobalamin is a cofactor for the reaction. The effects of methionine deprivation and methylcobalamin supplementation on the growth of normal and transformed rat liver epithelial cell lines were determined using growth constants to quantitate cell proliferation. No marked specific requirement by the transformed cell lines for methionine relative to leucine was observed. A sigmoidal relationship, however, was found to exist between growth constants and the logarithms of the amino acid concentrations for both normal and transformed cells. Methylcobalamin stimulated the growth rates of the normal and transformed liver cells in methionine-deficient, homocysteine-containing medium. Growth on methionine was not increased by the addition of methylcobalamin. The growth constants for two normal, two spontaneously transformed, one chemically transformed, and one tumor cell line grown in medium in which methionine was replaced by homocysteine were found to be proportional to the level of methionine synthetase. The results demonstrate the utility of growth quantitation to study the methionine dependency of transformed cells. Presented in part at the Conference on Differentiation and Carcinogenesis in Liver Cell Cultures sponsored by the New York Academy of Sciences, October 11, 1979 (see reference 1).  相似文献   

12.
The exposure of confluent peritubular (PT) cells from immature rat testis to insulin-like growth factor-1 (IGF-1) induced a time and dose-dependent increase of [35S]-sulfate and [3H]-d-glucosamine incorporations in newly synthesized proteoglycans (PG). This increased content of PG was the result of an enhancement of PG synthesis rather than a decreased rate of degradation. IGF-1 had no effect on the molecular weight of synthesized PG nor on the nature and distribution of the constitutive glycosaminoglycan chains, both in medium and in cell layer. The stimulation of PG synthesis by IGF-1 appeared to be due, at least partially, to an increase of glycosylation processes. IGF-1 effect was mediated by the classical tyrosine kinase signalling process, since IGF-1 action on PG synthesis was abolished by genistein and tyrphostin A9, two well known tyrosine kinase inhibitors. The increase of PG synthesis was accompanied with an undersulfation of constitutive glycosaminoglycan (GAG) chains (chondroitin sulfate and heparan sulfate chains) since the [35S]/[3H] ratio was reduced by about 20–25% in presence of IGF-1. Although the mechanism of hyaluronic acid synthesis was completely different from those of other GAG, IGF-1 also dramatically enhanced its production by PT cells.  相似文献   

13.
Continuous cultivation of Plasmodium falciparum presently requires the nutritionally complex medium, RPMI 1640. A basal medium of KCl, NaCl, Na2HPO4, Ca(NO3)2, MgSO4, glucose, reduced glutathione, HEPES buffer, hypoxanthine, phenol red (in RPMI 1640 concentrations), and 10% (v/v) exhaustively dialyzed pooled human serum was used to determine which vitamins and amino acids had to be exogenously supplied for continuous cultivation. Supplementation of basal medium with calcium pantothenate, cystine, glutamate, glutamine, isoleucine, methionine, proline, and tyrosine was necessary for continuous growth. This semi-defined minimal medium supported continuous growth of four isolates of P. falciparum at rates slightly less than those obtained with RPMI 1640. Adding any other vitamin or amino acid did not improve growth. Incorporation of several non-essential amino acids, particularly phenylalanine and leucine, into proteins was markedly enhanced in the minimal medium compared to RPMI 1640.  相似文献   

14.
When grown in the light and in a Tris-acetate phosphate medium, cells of Chlamydomonas reinhardtii Dang. can use the following l-amino acids as a sole nitrogen source: asparagine, glutamine, arginine, lysine, alanine, valine, leucine, isoleucine, serine, methionine, histidine, and phenylalanine, whereas, in the absence of acetate, the cells only used l-arginine. The utilization system in the acetate medium consisted of an extracellular deaminating activity induced by l-amino acids; it took between 10 to 30 h before the system appeared in cells previously grown with ammonium. This deaminase activity was nonspecific, required an organic carbon source for its de-novo synthesis, and was sensitive to high ammonium concentration and light deprivation.Abbreviations HPLC high-performance liquid chromatography - TAP Tris-acetate-phosphate This work was supported by a grant of the CAICYT, Spain. The secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.To whom correspondence should be addressed.  相似文献   

15.
A program implementing a flux model of Escherichia coli metabolism was used to analyze the effects of the addition of amino acids (tryptophan, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, lysine, threonine, cysteine, methionine, arginine, proline) to minimal medium or media lacking nitrogen, carbon, or both. The overall response of the metabolic system to the addition of various amino acids to the minimal medium is similar. Glycolysis and the synthesis of pyruvate with its subsequent degradation to acetate via acetyl-CoA become more efficient, whereas the fluxes through the pentose phosphate pathway and the TCA cycle decrease. If amino acids are used as the sole source of carbon, nitrogen, or both, the changes in the flux distribution are determined mainly by the carbon limitation. The phosphoenolpyruvate to glucose-6-phosphate flux increases; the flux through the pentose phosphate path is directed towards ribulose-5-phosphate. Other changes are determined by the compounds that are the primary products of catabolism of the added amino acid.  相似文献   

16.
Expression of capsule-associated genes of Cryptococcus neoformans   总被引:2,自引:0,他引:2  
Cryptococcus neoformans produces an extracellular polysaccharide capsule that is related to its virulence. The production of capsular components was reported to be accelerated when cultured on media with lower amount of glucose. In this study, relationship between capsule synthesis and expression of capsule-associated genes (CAP genes) was investigated by quantitative real-time PCR analysis. Normally encapsulated strains and a stable acapsular strain were cultured in 1% polypepton medium with 0.1% or 15% glucose. The results of assessment of the capsule size showed that the capsule of yeast cells cultured in the medium with low amount of glucose was thicker than that with high amount of glucose. The CAP gene expressions of normally encapsulated strains were higher in the medium with 0.1% glucose than in the medium with 15% glucose. Furthermore, CAP10, CAP59 and CAP60 genes were expressed very low in a stable acapsular strain, and CAP64 gene was not expressed. Results of assessment of capsule size and CAP gene expressions by quantitative real-time PCR analysis indicated that CAP gene expressions might be related to the production of capsule, and that glucose concentration in culture media might be related to the expression of CAP genes.  相似文献   

17.
The formation of soluble Monascus red pigments is strongly positively and negatively regulated by different amino acids. Leucine, valine, lysine, and methionine had strong negative effects on pigment formation. Leucine supported poor pigment formation when used as sole nitrogen source in fermentations, yet it neither repressed pigment synthase(s) nor inhibited its action. The new pigments derived from the hydrophobic leucine were more hydrophilic than the conventional red pigments (lacking an amino acid side-chain) and were extracellularly produced. Therefore, the low level of red pigments produced when leucine was the nitrogen source was not due to feed-back regulation by cell-bound leucine pigments. The negative effect of leucine was caused by enhanced decay of pigment synthase(s). The enhanced decay was not due simply to de novo synthesis of a leucine-induced protease.Abbreviations mSG Monosodium glutamate - MOPS 3-(N-morpholine)propane sulfonic acid - DCW dry cell weight  相似文献   

18.
The effect of different amino acid supplements to the basal medium on poly(3-hydroxybutyrate) (PHB) accumulation by recombinant pha Sa + Escherichia coli (ATCC: PTA-1579) harbouring the poly(3-hydroxybutyrate)-synthesizing genes from Streptomyces aureofaciens NRRL 2209 was studied. With the exception of glycine and valine, all other amino acid supplements brought about enhancement of PHB accumulation. In particular, cysteine, isoleucine or methionine supplementation increased PHB accumulation by 60, 45 and 61% respectively by the recombinant E. coli as compared with PHB accumulation by this organism in the basal medium. The effect of co-ordinated addition of assorted combinations of these three amino acids on PHB accumulation was studied using a 23 factorial design. The three-factor interaction analyses revealed that the effect of the three amino acids on PHB accumulation by the recombinant E. coli was in the order of cysteine > methionine > isoleucine. The defined medium supplemented with cysteine, methionine and isoleucine at the concentration of 150 mgl–1 each and glycerol as the carbon source was the optimum medium that resulted in the accumulation of about 52% PHB of cell dry weight.  相似文献   

19.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

20.
We investigated the regulation of ribosome synthesis in Saccharomyces cerevisiae growing at different rates and in response to a growth stimulus. The ribosome content and the rates of synthesis of ribosomal ribonucleic acid and of ribosomal proteins were compared in cultures growing in minimal medium with either glucose or ethanol as a carbon source. The results demonstrated that ribosome content is proportional to growth rate. Moreover, these steady-state concentrations are regulated at the level of synthesis of ribosomal precursor ribonucleic acid and of ribosomal proteins. When cultures growing on ethanol were enriched with glucose, the rate of ribosomal ribonucleic acid synthesis, measured by pulsing cells with [methyl-3H]methionine, increased by 40% within 5 min, doubled within 15 min, and reached a steady state characteristic of the new growth medium by 30 min. Labeling with [3H]leucine reveal a coordinate increase in the rate of synthesis of 30 or more ribosomal proteins as compared with that of total cellular proteins. Their synthesis was stimulated approximately 2.5-fold within 15 min and nearly 4-fold within 60 min. The data suggest that S. cerevisiae responds to a growth stimulus by preferential stimulation of the synthesis of ribosomal ribonucleic acid and ribosomal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号