首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Construction of a BAC library of pearl millet, Pennisetum glaucum   总被引:3,自引:0,他引:3  
A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA from pearl millet (Pennisetum glaucum), and used as a resource for the isolation of microsatellite sequences. The library contains a total of 159,100 clones with an average insert size of 90 kb, and corresponds to 5.8 haploid genome equivalents. The BAC library was pooled for screening by the polymerase chain reaction (PCR) as well as robotically gridded on high-density filters. PCR-based screening of a subset of the library (4.7 haploid genome equivalents) using five sequence-tagged site (STS) and six microsatellite markers identified between 2 and 11 positives superpools (5.4 on average). The frequency of BAC clones carrying inserts of chloroplast DNA was estimated to be less than 1% by hybridisation with a rice chloroplast probe. Received: 30 January 2000 / Accepted: 16 October 2000  相似文献   

2.
A porcine bacterial artificial chromosome (BAC) library consisting of 103,488 clones has been constructed. The average insert size in the BAC vector was calculated to be 133 kb based on the examination of 189 randomly selected clones, indicating that the library contained 4.4 genome equivalents. The library can be screened by two-step PCR. The first screening step is performed on 22 superpools, each containing 4704 clones (49 x 96 well plates). In the second screening step, 49 plates comprising a superpool are arrayed in a 7 x 7 matrix and 4D-PCR is performed. Screening of the library superpools by PCR for 125 marker sequences selected from different regions of swine genome revealed 123 sequences, indicating that the library is not biased. Subsequent screenings (4D-PCR) were successfully applied for identification of clones containing each marker sequence. This porcine BAC library and the PCR screening system are useful for isolation of genomic DNA fragments containing desired sequences.  相似文献   

3.
A sheep BAC library of over three genome equivalents was constructed and arrayed in superpools and row, column, and plate pools. The library contains 90,000 clones distributed in 39 superpools. The average insert size was estimated at 123 kb. The library was screened by PCR with 77 primer pairs corresponding to ovine microsatellites distributed throughout the genome. The probability of finding a random sequence in the library could be estimated at 0.96. Received: 2 November 1998 / Accepted: 29 January 1999  相似文献   

4.
Liu W  Liu Z  Hu X  Zhang Y  Yuan J  Zhao R  Li Z  Xu W  Gao Y  Deng X  Li N 《Animal biotechnology》2003,14(2):145-153
A chicken bacterial artificial chromosome (BAC) library consisting of 138,240 clones was constructed in vector pBeloBAC11 with genomic DNA isolated from female white-silk chicken. An average insert size of 118 kb was estimated from 452 randomly isolated clones, which indicate the library to be approximate 13.34-fold genome coverage. For the demonstration of the probability to pick out any unique genes or DNA markers from the library, 8 single-copy genes were screened out and the positive clones were yielded between 2 and 15 with an average of 11.125, in agreement with the estimated high genomic coverage of this library. Positive superpools were obtained for 40 microsatellite markers selected from different regions of chicken genome. The number of positive superpools for each marker varies from 1 to 15 with an average of 9.475.  相似文献   

5.
A bovine large-insert DNA library has been constructed in a Bacterial Artificial Chromosome (BAC) vector. The source DNA was derived from lymphocytes of a Jersey male. High-molecular-weight DNA fragments were produced by treatment with EcoRI/EcoRI methylase and cloned into the EcoRI site of pBACe3.6. In total, 157,240 individual BACs have been picked into 384-well plates. Approximately 190 randomly chosen clones have been characterized by Pulsed Field Gel Electrophoresis (PFGE) and have an average insert size of 105 kb, suggesting library coverage representing 5–6 genome equivalents. The frequency of clones without inserts is 4%. The chromosomal location of 51 BACs was studied by FISH; 3 showed more than one signal, indicating a chimerism frequency of roughly 6%. Approximately 50% of the clones in the library contain Simple Repeat Sequences (microsatellites), and 4% of the clones contain centromeric repeats. Insert stability was assessed by restriction digestion of DNA prepared from 20 clones after serial culture for one and three nights. Only one clone showed any evidence of an altered restriction pattern. Clones from 360 × 384-well plates (138,240 colonies) were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Both membranes and superpools are available from the RZPD, Berlin (http://www.rzpd.de). PCR 4-D superpools have been prepared from an additional 23,000 clones. The library has been screened for a total of 24 single-copy sequences; positive clones have been obtained in all cases. Received: 14 October 1998 / Accepted: 9 March 1999  相似文献   

6.
Construction and characterization of a gridded cattle BAC library   总被引:3,自引:0,他引:3  
A bovine genomic large-insert bacterial artificial chromosome (BAC) library has been constructed from leukocytes of a Holstein-Friesian male. Size fractionated DpnII-digested genomic DNA was ligated to the dephosphorylated BamH1 ends of a pBACe3.6 vector. Approximately 8.3 x 10(4) individual BAC clones were picked into 384-well plates. Two-hundred and sixty-seven randomly chosen clones were characterized by pulsed-field gel electrophoresis (PFGE). The average insert size was 104 kb with a frequency of clones without inserts of 5.5%. Thirty-four BAC clones were mapped by fluorescence in situ hybridization (FISH) to cattle chromosomes. Three showed signals at more than one location, one of them on the centromeric regions of all autosomes, indicating that the clone contains centromeric repeats. A subset of these BAC clones was used for the development of sequence tagged sites. Both subcloning and direct sequencing of the BACs were used for generating sequence tagged site information. The clones from the library were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Membranes and superpools are available through the Resource Centre of the German Human Genome Project in Berlin (http:// www.rzpd.de).  相似文献   

7.
《Gene》1997,191(1):69-79
We have constructed a human genomic bacterial artificial chromosome (BAC) library using high molecular weight DNA from a pre-pro-B cell line, FLEB14-14, with a normal male diploid karyotype. This BAC library consists of 96 000 clones with an average DNA insert size of 110 kb, covering the human genome approximately 3 times. The library can be screened by three different methods. (1) Probe hybridization to 31 high-density replica (HDR) filters: each filter contains 3072 BAC clones which were gridded in a 6×6 pattern. (2) Probe hybridization to two Southern blot filters to which 31 HindIII digests of the pooled 3072 BAC clones were loaded. This identifies a particular HDR filter for which further probe hybridization is performed to identify a particular clone(s). (3) Two-step polymerase chain reaction (PCR). First, PCR is applied to DNA samples prepared from ten superpools of 9600 BAC clones each to identify a particular superpool and the second PCR is applied to 40 unique DNA samples prepared from the four-dimensionally assigned BAC clones of the particular superpool. We present typical examples of the library screening using these three methods. The two-step PCR screening is particularly powerful since it allows us to isolate a desired BAC clone(s) within a day or so. The theoretical consideration of the advantage of this method is presented. Furthermore, we have adapted Vectorette method to our BAC library for the isolation of terminal sequences of the BAC DNA insert to facilitate contig formation by BAC walking.  相似文献   

8.
 To facilitate genome analysis and map-based cloning of symbiotic genes in the model legume Medicago truncatula, a bacterial artificial chromosome (BAC) library was constructed. The library consists of 30 720 clones with an average insert size of approximately 100 kb, representing approximately five haploid-genome equivalents. The frequency of BAC clones carrying inserts of chloroplast DNA was estimated to be 1.4%. Screening of the library with single- or low-copy genes as hybridization probes resulted in the detection of 1–12 clones per gene. Hybridization of the library with repeated sequences such as rDNA genes and transposon-like elements of M. truncatula revealed the presence of 60 and 374 BAC clones containing the two sequences, respectively. The BAC library was pooled for screening by polymerase chain reaction (PCR)-amplification. To demonstrate the utility of this system, we used primers designed from a conserved region of the ein3-like loci of Arabidopsis thaliana and isolated six unique BAC clones from the library. DNA gel-blot and sequence analyses showed that these ein3-like clones could be grouped into three classes, an observation consistent with the presence of multiple ein3-like loci in M. truncatula. These results indicate that the BAC library represents a central resource for the map-based cloning and physical mapping in M. truncatula and other legumes. Received: 27 July 1998 / Accepted: 5 August 1998  相似文献   

9.
A bacterial artificial chromosome (BAC) library of common carp Cyprinus carpio L. was constructed as a part of ongoing common carp genome project, which is aiming assembly of common carp genome. The library, containing a total of 92,160 BAC clones with an average insert size of 141 kb, was constructed into the restriction site of Hind III on BAC vector CopyControl pCC1BAC, covering 7.7 X haploid genome equivalents. Three dimension pools and superpools of the BAC library were established and 23 positive clones of 14 targets were identified from one-fifth of the BAC library. Pilot project of BAC end sequencing was conducted on 2,688 BAC ends from 1,344 clones and harvested 2,522 high-quality Q20 sequences with average length of 677 bp. The sequencing success rate was 93.8% and pair-end success rate was 92.3%. A total of 212 microsyntenies had been established between common carp and zebrafish genomes as a trial for genome-wide comparative genomics in these two closely related species.  相似文献   

10.
A bacterial artificial chromosome (BAC) library consisting of 11 000 clones with an average DNA insert size of 125 kb was constructed from rice nuclear DNA. The BAC clones were stable in E. coli after 100 generations of serial growth. Transformation of the BAC clones by electroporation into E. coli was highly efficient and increased with decreasing size of the DNA inserts. The library was evaluated for the presence of organellar, repeated, and telomeric sequences. A very low percentage (<0.3%) of the library consisted of chloroplast and mitochondrial clones. Eighteen BACs were identified that hybridized with an Arabidopsis telomere repeat. Sixteen BACs hybridized with the AA genome-specific repetitive sequence pOs48. Twelve clones were isolated that hybridized with three DNA markers linked to the Xa-21 disease resistance locus. The results indicate that the BAC system can be used to clone and manipulate large pieces of plant DNA efficiently.  相似文献   

11.
 A soybean bacterial artificial chromosome (BAC) library, comprising approximately 45 000 clones, was constructed from high-molecular-weight nuclear DNA of cultivar Williams 82, which carries the Rps1-k gene for resistance against Phytophthora sojae. The library is stored in 130 pools with about 350 clones per pool. Completeness of the library was evaluated for 21 random sequences including four markers linked to the Rps1 locus and 16 cDNAs. We identified pools containing BACs for all sequences except for one cDNA. Additionally, when screened for possible contaminating BAC clones carrying chloroplast genes, no sequences homologous to two barley chloroplast genes were found. The estimated average insert size of the BAC clones was about 105 kb. The library comprises about four genome equivalents of soybean DNA. Therefore, this gives a probability of 0.98 of finding a specific sequence from this library. This library should be a useful resource for the positional cloning of Rps1-k, and other soybean genes. We have also evaluated the feasibility of an RFLP-based screening procedure for the isolation of BAC clones specific for markers that are members of repetitive sequence families, and are linked to the Rps1-k gene. We show that BAC clones isolated for two genetically linked marker loci, Tgmr and TC1-2, are physically linked. Application of this method in expediting the map-based cloning of a gene, especially from an organism, such as soybean, maize and wheat, with a complex genome is discussed. Received: 12 May 1998/Accepted: 24 August 1998  相似文献   

12.
A sunflower BAC library consisting of 147,456 clones with an average size of 118 kb has been constructed and characterized. It represents approximately 5× sunflower haploid genome equivalents. The BAC library has been arranged in pools and superpools of DNA allowing screening with various PCR-based markers. Each of the 32 superpools contains 4,608 clones and corresponds to a 36 matrix pools. Thus, the screening of the entire library could be accomplished in less than 80 PCR reactions including positive and negative controls. As a demonstration of the feasibility of the concept, a set of 24 SSR markers covering about 36 cM in the sunflower SSR map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) have been used to screen the BAC library. About 125 BAC clones have been identified and then organized in 23 contigs by HindIII digestion. The contigs are anchored on the SSR map and thus constitutes a first-generation physical map of this region. The utility of this BAC library as a genomic resource for physical mapping and map-based cloning in sunflower is discussed.  相似文献   

13.
A bovine artificial chromosome (BAC) library of 105 984 clones has been constructed in the vector pBeloBAC11 and organized in 3-dimension pools and high density membranes for screening by PCR and hybridization. The average insert size, determined after analysis of 388 clones, was estimated at 120 kb corresponding to a four genome coverage. Given the fact that a male was used to construct the library, the probability of finding any given autosomal and X or Y locus is respectively 0.98 and 0.86. The library was screened for 164 microsatellite markers and an average of 3.9 superpools was positive for each PCR system. None of the 50 or so BAC clones analysed by FISH was chimeric. This BAC library increases the international genome coverage for cattle to around 28 genome equivalents and extends the coverage of the ruminant genomes available at the Inra resource center to 15 genome equivalents.  相似文献   

14.
Two-dimensional screening of the Wageningen chicken BAC library   总被引:10,自引:0,他引:10  
We have constructed a Bacterial Artificial Chromosome (BAC) library that provides 5.5-fold redundant coverage of the chicken genome. The library was made by cloning partial HindIII-digested high-molecular-weight (HMW) DNA of a female White Leghorn chicken into the HindIII site of the vector pECBAC1. Several modifications of standard protocols were necessary to clone efficiently large partial HindIII DNA fragments. The library consists of 49,920 clones arranged in 130 384-well plates. An average insert size of 134 kb was estimated from the analysis of 152 randomly selected BAC clones. The average number of NotI restriction sites per clone was 0.77. After individual growth, DNA was isolated of the pooled clones of each 384-well plate, and subsequently DNA of each plate was isolated from the individual row and column pools. Screening of the Wageningen chicken BAC library was performed by two-dimensional PCR with 125 microsatellite markers. For 124 markers at least one BAC clone was obtained. FISH experiments of 108 BAC clones revealed chimerism in less than 1%. The number of different BAC clones per marker present in the BAC library was examined for 35 markers which resulted in a total of 167 different BAC clones. Per marker the number of BAC clones varied from 1 to 11, with an average of 4.77. The chicken BAC library constitutes an invaluable tool for positional cloning and for comparative mapping studies. Received: 26 October 1999 / Accepted: 6 January 2000  相似文献   

15.
A rat PAC library was constructed in the vector pPAC4 from genomic DNA isolated from female Brown Norway rats. This library consists of 215,409 clones arrayed in 614 384-well microtiter plates. An average insert size of 143 kb was estimated from 217 randomly isolated clones, thus representing approximately 10-fold genome coverage. This coverage provides a very high probability that the library contains a unique sequence in genome screening. Tests on randomly selected clones demonstrated that they are very stable, with only 4 of 130 clones showing restriction digest fragment alterations after 80 generations of serial growth. FISH analysis using 70 randomly chosen PACs revealed no significant chimeric clones. About 7% of the clones analyzed contained repetitive sequences related to centromeric regions that hybridized to some but not all centromeres. DNA plate pools and superpools were made, and high-density filters each containing an array of 8 plates in duplicate were prepared. Library screening on these superpools and appropriate filters with 10 single-locus rat markers revealed an average of 8 positive clones, in agreement with the estimated high genomic coverage of this library and representation of the rat genome. This library provides a new resource for rat genome analysis, in particular the identification of genes involved in models of multifactorial disease. The library and high-density filters are currently available to the scientific community.  相似文献   

16.
Complementary BAC and BIBAC libraries were constructed from nuclear DNA of sunflower cultivar HA 89. The BAC library, constructed with BamHI in the pECBAC1 vector, contains 107,136 clones and has an average insert size of 140 kb. The BIBAC library was constructed with HindIII in the plant-transformation-competent binary vector pCLD04541 and contains 84,864 clones, with an average insert size of 137 kb. The two libraries combined contain 192,000 clones and are equivalent to approximately 8.9 haploid genomes of sunflower (3,000 Mb/1C), and provide a greater than 99% probability of obtaining a clone of interest. The frequencies of BAC and BIBAC clones carrying chloroplast or mitochondrial DNA sequences were estimated to be 2.35 and 0.04%, respectively, and insert-empty clones were less than 0.5%. To facilitate chromosome engineering and anchor the sunflower genetic map to its chromosomes, one to three single- or low-copy RFLP markers from each linkage group of sunflower were used to design pairs of overlapping oligonucleotides (overgos). Thirty-six overgos were designed and pooled as probes to screen a subset (5.1×) of the BAC and BIBAC libraries. Of the 36 overgos, 33 (92%) gave at least one positive clone and 3 (8%) failed to hit any clone. As a result, 195 BAC and BIBAC clones representing 19 linkage groups were identified, including 76 BAC clones and 119 BIBAC clones, further verifying the genome coverage and utility of the libraries. These BAC and BIBAC libraries and linkage group-specific clones provide resources essential for comprehensive research of the sunflower genome.  相似文献   

17.
Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
We estimated the genome size of Korean ginseng ( Panax ginseng C.A. Meyer), a medicinal herb, constructed a Hin dIII BAC library, and analyzed BAC-end sequences to provide an initial characterization of the library. The 1C nuclear DNA content of Korean ginseng was estimated to be 3.33 pg (3.12×103 Mb). The BAC library consists of 106,368 clones with an average size of 98.61 kb, amounting to 3.34 genome equivalents. Sequencing of 2167 BAC clones generated 2492 BAC-end sequences with an average length of 400 bp. Analysis using BLAST and motif searches revealed that 10.2%, 20.9% and 3.8% of the BAC-end sequences contained protein-coding regions, transposable elements and microsatellites, respectively. A comparison of the functional categories represented by the protein-coding regions found in BAC-end sequences with those of Arabidopsis revealed that proteins pertaining to energy metabolism, subcellular localization, cofactor requirement and transport facilitation were more highly represented in the P. ginseng sample. In addition, a sequence encoding a glucosyltransferase-like protein implicated in the ginsenoside biosynthesis pathway was also found. The majority of the transposable element sequences found belonged to the gypsy type (67.6%), followed by copia (11.7%) and LINE (8.0%) retrotransposons, whereas DNA transposons accounted for only 2.1% of the total in our sequence sample. Higher levels of transposable elements than protein-coding regions suggest that mobile elements have played an important role in the evolution of the genome of Korean ginseng, and contributed significantly to its complexity. We also identified 103 microsatellites with 3–38 repeats in their motifs. The BAC library and BAC-end sequences will serve as a useful resource for physical mapping, positional cloning and genome sequencing of P. ginseng.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

19.
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.  相似文献   

20.
A plant-transformation-competent binary BAC library was constructed from the genomic DNA of the chromosome 9 monosomic addition line of Beta corolliflora Zoss. in sugar beet (B. vulgaris. L). This monosomic addition line (designated M14) is characterized by diplosporic reproduction caused by the alien chromosome carrying the gene(s) responsible for diplospory. The library consists of 49,920 clones with an average insert size of 127 kb, representing approximately 7.5 haploid genome equivalents and providing a greater than 99% probability of isolating a single-copy DNA sequence from the library. To develop the scaffold of a physical map for the alien chromosome, B. corolliflora genome-specific dispersed repetitive DNA sequences were used as probes to isolate BAC clones derived from the alien chromosome in the library. A total of 2,365 positive clones were obtained and arrayed into a sublibrary specific for B. corolliflora chromosome 9 (designated bcBAC-IX). The bcBAC-IX sublibrary was further screened with a subtractive cDNA pool generated from the ovules of M14 and the floral buds of B. vulgaris by the suppression subtractive hybridization method. One hundred and three positive binary BACs were obtained, which potentially contain the genes of the alien chromosome specifically expressed during the ovule and embryo development of M14, and may be associated with apomictic reproduction. Thus, these binary BAC clones will be useful for identification of the genes for apomixis by genetic transformation.Communicated by H. C. Becker  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号