首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Chang  Y M Yu  S M Dai  S K Law    S S Gill 《Applied microbiology》1993,59(3):815-821
Interactions among the 20-kDa protein gene and the cytA and cryIVD genes located in a 9.4-kb HindIII fragment were studied. A series of plasmids containing a combination of these different genes was constructed by using the Escherichia coli/Bacillus thuringiensis shuttle vector pHT3101. The plasmids were then used to transform an acrystalliferous strain, cryB, derived from B. thuringiensis subsp. kurstaki. The results from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses suggest that although the 20-kDa protein is required for the efficient CytA protein production in E. coli, it is not required in B. thuringiensis. With or without the truncated 20-kDa protein gene, the CtyA and/or CryIVD proteins are produced and form parasporal inclusions in B. thuringiensis cells. However, more-efficient expression is obtained when a second protein, probably acting as a chaperonin, is present. In addition, the time course studies show that the CytA and CryIVD proteins are coordinately produced. Both the crude B. thuringiensis culture and purified inclusions from each recombinant B. thuringiensis strain are toxic to Culex quinquefasciatus larvae. The parasporal inclusions formed in B. thuringiensis cells are mosquitocidal, with CytA synergizing CryIVD toxicity.  相似文献   

2.
The toxicity to mosquito larvae of the parasporal body produced by Bacillus thuringiensis subsp. israelensis and the PG-14 isolate of B. thuringiensis subsp. morrisoni is at least 20-fold greater than any of the four mosquitocidal proteins of which It is composed (CytA, CrylVA, B, and D). This high toxicity is postulated to be due to synergistic interactions among parasporal proteins. However, this remains controversial because values reported for the specific toxicity of individual proteins, especially the CytA protein, vary widely owing to the methods used to purify and assay toxins against larvae. In an attempt to resolve questions of purity, specific toxicity, and synergism, individual genes encoding the CytA and CrylVD toxins were cloned and expressed in acrystalliferous B. thuringiensis subsp. israelensis cells using the shuttle vector pHT3101. CytA and CryIVD inclusions were purified and their toxicity was determined alone and when combined at different ratios using bio-assays against first instars of Aedes aegypti. The LC50 for the CytA inclusion was 60 ng ml−1, whereas the LC50 for the CryIVD was 85ng ml−1 In comparison, the LC50s for different combinations of CytA and CrylVD inclusions ranged from 12–15 ng ml−1, 4–5 times higher than the toxicity of either protein alone, demonstrating marked synergism between these two proteins. These results suggest that the high toxicity of the wild-type parasporal bodies of B. thuringiensis subspp. israelensis and morrisoni Is due to synergism among three or four of their major proteins.  相似文献   

3.
The effect of a 20-kDa protein on cell viability and CytA crystal production in its natural host, Bacillus thuringiensis, was studied by expressing the cytA gene in the absence or presence of this protein. In the absence of the 20-kDa protein, B. thuringiensis cells either were killed during sporulation (strain cryB) or produced very small CytA crystals (strain 4Q7). Expression of cytA in the presence of the 20-kDa protein, however, preserved cell viability, especially in strain cryB, and in both strains yielded bipyramidal crystals of the CytA protein that were larger than those of wild-type B. thuringiensis. These results suggest that the 20-kDa protein promotes crystal formation, perhaps by chaperoning CytA molecules during synthesis and crystallization, concomitantly preventing the CytA protein from interacting lethally with the bacterial host cell.  相似文献   

4.
CytA, a 27-kDa cytolytic crystal protein of Bacillus thuringiensis subsp. israelensis, is produced only at very low levels by recombinant Escherichia coli cells unless a 20-kDa B. thuringiensis subsp. israelensis protein is also present (K. M. McLean and H. R. Whiteley, J. Bacteriol. 169:1017-1023, 1987; L. F. Adams, J. E. Visick, and H. R. Whiteley, J. Bacteriol. 171:521-530, 1989). However, the data reported here demonstrate that the 20-kDa protein is not required for high-level CytA production in E. coli strains carrying mutations in rpoH, groEL, or dnaK, all of which affect the proteolytic ability of the cells. The 20-kDa protein also increases the amount of CryIVD (another B. thuringiensis subsp. israelensis crystal protein) and LacZX90 (a mutant of beta-galactosidase) made by E. coli. The latter phenomenon is attributable to an increase in the half-life of LacZX90, suggesting that the 20-kDa protein may stabilize this protein. The effect of the 20-kDa protein was also examined in vitro and in a T7 RNA polymerase expression system, and the possible significance of these results for the timing of proteolysis and of 20-kDa protein activity is discussed. Finally, the ability of a single antibody to coimmunoprecipitate CytA and the 20-kDa protein from E. coli extracts provides evidence for a protein-protein interaction that may be related to the mechanism of action of the 20-kDa protein.  相似文献   

5.
Crystal proteins from Bacillus thuringiensis subsp. thompsoni strain HnC are active against the codling moth, Cydia pomonella, a major pest of orchards. Inclusion bodies purified from strain HnC displayed an LC50 of 3.34 × 10−3μg/μl. HnC-purified crystals were tenfold more active than Cry2Aa and Cry1Aa toxins, and 100-fold more toxic than Cry1Ab. The 34-kDa and 40-kDa proteins contained in HnC inclusion bodies were shown to act synergistically. The toxicity of crystal proteins produced by the recombinant B. thuringiensis strain BT-OP expressing the full-length native operon was about tenfold higher than that of the 34-kDa protein. When the gene encoding the non-insecticidal 40-kDa protein, which is not active, was introduced into the recombinant strain producing only the 34-kDa protein, the toxicity was raised tenfold and was similar to that of the strain BT-OP. Received: 25 August 1999 / Accepted: 5 October 1999  相似文献   

6.
Yu J  Xie R  Tan L  Xu W  Zeng S  Chen J  Tang M  Pang Y 《Current microbiology》2002,45(2):133-138
Bacillus thuringiensis produces a 130–135-kDa insecticidal protein in the form of bipyramidal crystal which is toxic to lepidopteran larvae. Part of the C-terminal region of the native Cry1Ab was replaced by a heterologous sequence of Cry11Aa C-terminus to get a 3′-spliced cry1Ab gene. The full-length cry1Ab and 3′-spliced cry1Ab, which were both cloned into the E. coli–B. thuringiensis shuttle expression vector pHZB1, were expressed in a 135-kDa crystal protein minus derivative of B. thuringiensis subsp. kyushuensis (4U1-Cry−135). The crystal shape of Cry1Ab proteins from both recombinants was regularly bipyramidal, while the crystal size of the intact Cry1Ab was approximately fivefold larger than the 3′-spliced Cry1Ab. In addition, these two kinds of Cry1Ab proteins had similar toxicity against Argyrogramma agnata larvae. Received: 19 October 2001 / Accepted: 7 December 2001  相似文献   

7.
A new cry1Ab-type gene encoding the 130 kDa protein of Bacillus thuringiensis NT0423 bipyramidal crystals was cloned, sequenced, and expressed in a crystal-negative B. thuringiensis host. Hybridization experiments revealed that the crystal protein gene is located on a 44 MDa plasmid of B. thuringiensis NT0423. A strong positive signal detected on the 6.6 kb HindIII fragment from B. thuringiensis NT0423 plasmid DNA was cloned and sequenced. The cry1Ab-type gene, designated cry1Af1, consisted of open reading frame of 3453 bp, encoding a protein of 1151 amino acid residues. The polypeptide has the deduced amino acid sequences predicting molecular masses of 130,215 Da. With both Bt I and Br II promoter sequences were found, the B. thuringiensis NT0423 crystal protein gene promoter closely aligned with those of cry1A-type crystal protein gene. When compared with known sequences of other Cry and Cyt proteins, the Cry1Af1 protein showed maximum 93% sequence identity to Cry1Ab protein of B. thuringiensis subsp. kurstaki. The expressed Cry1Af1 protein in a crystal-negative B. thuringiensis host appears to have strong insecticidal activity against lepidopteran larvae (Plutella xylostella). Crystals containing Cry1Af1 were about six times more toxic than the wild-type crystals of B. thuringiensis NT0423. Received: 20 February 2001 / Accepted: 17 April 2001  相似文献   

8.
A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli.  相似文献   

9.
RecombinantEscherichia coli strains harboring pAG1, pAG2, pKBB100, and pKBB101 were cloned by using antiserum constructed against 130-kDa crystal protein antigen ofBacillus thuringiensis serovarjaponensis strain Buibui. DNAs in the recombinant strains hybridized to the 26-base oligonucleotide probe corresponding to N-terminal amino acids of the 130-kDa crystal protein of strain Buibui. Cultures of the recombinant strains were toxic to larvae of the cupreous chafer,anomala cuprea. Furthermore, the production of the 130-kDa polypeptide was demonstrated in the cells harboring pAG1 and pAG2 by immunoblot analysis with antiserum against the 130-kDa crystal protein. Southern hybridization analysis showed that the 130-kDa crystal protein gene is located on the chromosomal DNA of strain Buibui. On the other hand, DNA probes derived fromcryIA(a) andcryIIIA genes did not hybridize to the DNA of strain Buibui.  相似文献   

10.
11.
Bacillus thuringiensis var. israelensis produces 130-kDa proteins which are toxic to mosquito larvae. The ISRH4 gene encoding 1,180 amino acids of the 130-kDa insecticidal protein was fused with lac Z′ on a plasmid, pUC19, and sequentially deleted from the C-terminus to construct a series of deletion mutants. All the deletion mutant genes directed the production of truncated ISRH4 proteins fused with the α-complementing fragment of β-galactosidase in Escherichia coli cells in the presence of isopropyl β-d-thiogalactopyranoside. Analysis of the mosquito larvicidal activity of deletion mutant proteins revealed that the N-terminal 29 amino acids and the C-terminal 485 amino acids could be removed without loss of the activity.  相似文献   

12.
A fusion gene was constructed by combining the cry1Ac gene of Bacillus thuringiensis strain 4.0718 with a neurotoxin gene, hwtx-1, which was synthesized chemically. In this process, an enterokinase recognition site sequence was inserted in frame between two genes, and the fusion gene, including the promoter and the terminator of the cry1Ac gene, was cloned into the shuttle vector pHT304 to obtain a new expression vector, pXL43. A 138-kDa fusion protein was mass-expressed in the recombinant strain XL002, which was generated by transforming pXL43 into B. thuringiensis acrystalliferous strain XBU001. Quantitative analysis indicated that the expressed protein accounted for 61.38% of total cellular proteins. Under atomic force microscopy, there were some bipyramidal crystals with a size of 1.0 × 2.0 μm. Bioassay showed that the fusion crystals from recombinant strain XL002 had a higher toxicity than the original Cry1Ac crystal protein against third-instar larvae of Plutella xylostella, with an LC50 (after 48 h) value of 5.12 μg/mL. The study will enhance the toxicity of B. thuringiensis Cry toxins and set the groundwork for constructing fusion genes of the B. thuringiensis cry gene and other foreign toxin genes and recombinant strains with high toxicity. LiQiu Xia and XiaoShan Long contributed equally to this work.  相似文献   

13.
Xia L  Sun Y  Ding X  Fu Z  Mo X  Zhang H  Yuan Z 《Current microbiology》2005,51(1):53-58
Heterologous DNA fragments (20-kb) associated with Cry1 crystal proteins (protoxins) from a soil-isolated Bacillus thuringiensis strain 4.0718 were isolated and analyzed. RFLP patterns of the PCR products showed that the 20-kb DNA fragments harbored cry1Aa, cry1Ac, cry2Aa, and cry2Ab genes. Furthermore, a 4.2-kb DNA fragment, which contained the promoter, the coding region, and the terminator of cry1Ac gene, was cloned from the 20-kb DNAs by PCR, and then the cry1Ac gene was expressed in an acrystalliferous B. thuringiensis strain 4Q7 by using E. coli-B. thuringiensis shuttle vector pHT3101. SDS-PAGE and microscopy studies revealed that the recombinant could express 130-kDa Cry1Ac protoxin and produce bipyramidal crystals during sporulation. Bioassay results proved that crystal-spore mixture from the recombinant was toxic to Plutella xylostella. This was the first report of cry-type genes present on 20-kb DNA associated with Cry1 protoxins of B. thuringiensis.  相似文献   

14.
Summary A novel strain of Bacillus thuringiensis was isolated from soybean grain dust from Kansas and found to be toxic to larvae of Leptinotarsa decemlineata (Colorado potato bectle). The strain (EG2158) synthesized two parasporal crystals: a rhomboid crystal composed of a 73115 dalton protein and a flat, diamond-shaped crystal composed of a protein of approximately 30 kDa. Plasmid transfer and gene cloning experiments demonstrated that the 73 kDa protein was encoded on an 88 MDa plasmid and that the protein was toxic to the larvae of Colorado potato beetle (CPB). The sequence of the 73 kDa protein, as deduced from the sequence of its gene (cryC), was found to have regions of similarity with several B. thuringiensis crystal proteins: the lepidopteran-toxic P1 proteins of var. kurstaki and berliner, the lepidopteran- and dipteran-toxic P2 (or CRYB1) protein of var. kurstaki, and the dipteran-toxic 130 kDa protein of var. israelensis. While B. megaterium cells harboring the cryC gene from EG2158 synthesized significant amounts of the 73 kDa CRYC protein, Escherichia coli cells did not. The cryC-containing B. megaterium cells produced rhomboid crystals that were toxic to CPB larvae.  相似文献   

15.
To identify the actual mosquito larvicidal toxin(s) inBacillus thuringiensis serovarkyushuensis, we conducted a comparative toxicity study by a combination of ion-exchange chromatographies and SDS-PAGE. Among the proteins contained in solubilized and protease-treated inclusions, only the 23-kDa protein, a cytolysin referable to the CytB protein, exhibited mosquitocidal activity. The LC50 value of this protein was 51.4 g/ml for the third-instar larvae of the mosquito,Aedes aegypti. The fractions of other inclusion proteins showed no mosquito larvicidal activity at protein concentrations up to 1000 g/ml.  相似文献   

16.
The crystals of the soil-isolated Bacillus thuringiensis (Bt) strain A4 consist of two polypeptides with molecular mass of 140 kDa and 32 kDa that exhibit insecticidal activity against adult flies of Bactrocera oleae (Diptera). Plasmid curing applied to this strain resulted in the isolation of several subclones exhibiting alterations in their crystal polypeptides as well as two acrystalliferous subclones. The crystals of subclone 1.1 lacked the 32-kDa polypeptide and consisted uniquely of a 140-kDa polypeptide antigenically related to the parental 140-kDa crystal polypeptide. Additionally, the crystals of this subclone exhibited insecticidal activity against B. oleae equivalent to that of the parental strain. Therefore, the 32-kDa crystal polypeptide is dispensable for insecticidal activity, which appears to be dependent on the presence of the 140-kDa crystal polypeptide. Received: 5 April 2000 / Accepted 2 May 2000  相似文献   

17.
18.
At least three different insecticidal crystal protein genes were shown to be expressed in Bacillus thuringiensis subsp. aizawai 7.29, a strain that is potentially active against the cotton leafworm Spodoptera littoralis Bdv. Among crude K-60 fractions (60- to 70-kilodalton [kDa] molecules) that were products of proteolysed crystals containing the active domains of the protoxin molecules, we were able to distinguish several distinct components on the basis of their antigenic relationship and their larvicidal properties. A purified fraction designated SF2 was a 61-kDa component specifically active against Pieris brassicae L. and homologous to the B. thuringiensis subsp. berliner 1715 plasmid-encoded crystal protein. A second fraction designated SF1 was composed of 63- and 65-kDa polypeptides and was specifically active against S. littoralis. The SF1 fraction and particularly the 65-kDa component were not antigenically related to the 61-kDa component. The purified fractions were compared with the products of three different crystal protein genes we previously cloned from total DNA of B. thuringiensis subsp. aizawai, among them a new type of crystal protein gene encoding a protein that is specifically active against S. littoralis and other insects of the Noctuidae family. This approach led us to consider the 65-kDa component as a minimum active part of a δ-endotoxin that is encoded by this new gene. Products of the two other cloned genes can be correlated with the 61- and 63-kDa components, respectively. Thus, in B. thuringiensis subsp. aizawai 7.29, multiple δ-endotoxin genes of different structural types direct the synthesis of several δ-endotoxins with different host specificities which were identified as components of the insecticidal crystals.  相似文献   

19.
Summary A rapid and simple method of staining for the crystal protein (-endotoxin or parasporal body) ofBacillus thuringiensis has been developed. Changes in colonial morphology were observed when cells lost their ability to form crystal protein or both crystal protein and spore.  相似文献   

20.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号