首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tensile experiments and SEM fractography on bovine subchondral bone   总被引:4,自引:0,他引:4  
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.  相似文献   

2.
The purpose of this study was to determine the effect of Haversian remodeling on the tensile properties of human cortical bone by testing specimens containing, as far a possible, a single type of bone tissue. Fifty-one specimens were prepared from sixteen fresh tibias, removed at autopsy. Age range was 19-35. Regions were selected so that the specimens would consist almost exclusively of either primary bone or Haversian bone. The ultimate tensile strength, ultimate strain and Young's modulus of elasticity were determined at a loading rate of 0.05 mm s-1. The primary bone specimens were found to have a significantly higher ultimate tensile strength and modulus of elasticity than those formed of Haversian bone.  相似文献   

3.
The Hopkinson bar stress technique and a universal testing machine (Instron 1125) have been used to investigate the dynamic and static mechanical properties of cortical bone taken from a human femur respectively. We found that the average dynamic Young's modulus value (Ed = 19.9 GPa) to be 23% higher than the average static Young's modulus value (Ed = 16.2 GPa). Furthermore, the Poisson's ratio did not exhibit any significant variation for the two different types of loading. No difference was observed between the values of the dynamic Young's modulus in tension and those found in compression. A comparison was made of the results of this study with those found by other researchers using different techniques, such as ultrasonics, and it was found that they agree well with most of the results of previous studies. Finally, the viscosity for cortical bone found in this study correlates with viscosity reported by Tennyson et al. [Expl Mech. 12, 502-507 (1972)] for ten days post mortem age specimens.  相似文献   

4.
Up to now, due to cortical thickness and imaging resolution, it is not possible to derive subject-specific mechanical properties on the 'vertebral shell' from imaging modalities applicable in vivo. As a first step, the goal of this study was to assess the apparent Young's modulus of vertebral cortico-cancellous bone specimens using an inverse method. A total of 22 cortico-cancellous specimens were harvested from 22 vertebral bodies. All specimens were tested in compression until failure. To compute the apparent Young's modulus of the specimen from the inverse method, the boundary conditions of the biomechanical experiments were faithfully reproduced in a finite element model (FEM), and an optimisation routine was used. The results showed a mean of the apparent Young's modulus of 374?±?208?MPa, ranging from 87 to 791?MPa. By computing an apparent Young's modulus of a cortico-cancellous medium, this study gives mechanical data for an FEM of an entire vertebra including an external shell combining both bone tissues.  相似文献   

5.
In order to determine the accuracy of measurements of Young's modulus of cancellous bone by conventional compression testing, two independent strain measurements were made simultaneously during non-destructive uniaxial compression to 0.8% strain of rectangular specimens (n = 18). Strain was measured by an extensometer attached to the compression anvils close to the specimen and by an optical system covering the central half of the specimens. Mean Young's modulus determined by the extensometer technique was 689 MPa, but was 871 MPa when determined by the optical technique (mean difference = 182 MPa, SED = 50 MPa, p less than 0.002). Uneven strain distribution due to lack of support of cut vertical trabeculae at the anvil-specimen interface is believed to be causing the underestimation of Young's modulus measured by the extensometer technique. The influence of friction at the specimen-anvil interface was studied by performing a finite element analysis. It is concluded that Young's modulus of specimens of the chosen geometry on average is underestimated by about 20% by conventional compressing testing. The underestimation seems not to be dependent upon specimen density.  相似文献   

6.
Strain-controlled uniaxial fatigue and monotonic tensile tests were conducted on turned femoral cortical bone specimens obtained from baboons at various ages of maturity. Fatigue loading produced a progressive loss in stiffness and an increase in hysteresis prior to failure, indicating that immature primate cortical bone responds to repeated loading in a fashion similar to that previously observed for adult human cortical bone. Bone fatigue resistance under this strain controlled testing decreased during maturation. Maturation was also associated with an increase in bone dry density, ash fraction and elastic modulus. The higher elastic modulus of more mature bone meant that these specimens were subjected to higher stress levels during testing than more immature bone specimens. Anatomical regions along the femoral shaft exhibited differences in strength and fatigue resistance.  相似文献   

7.
The convergence behavior of finite element models depends on the size of elements used, the element polynomial order, and on the complexity of the applied loads. For high-resolution models of trabecular bone, changes in architecture and density may also be important. The goal of this study was to investigate the influence of these factors on the convergence behavior of high-resolution models of trabecular bone. Two human vertebral and two bovine tibial trabecular bone specimens were modeled at four resolutions ranging from 20 to 80 microns and subjected to both compressive and shear loading. Results indicated that convergence behavior depended on both loading mode (axial versus shear) and volume fraction of the specimen. Compared to the 20 microns resolution, the differences in apparent Young's modulus at 40 microns resolution were less than 5 percent for all specimens, and for apparent shear modulus were less than 7 percent. By contrast, differences at 80 microns resolution in apparent modulus were up to 41 percent, depending on the specimen tested and loading mode. Overall, differences in apparent properties were always less than 10 percent when the ratio of mean trabecular thickness to element size was greater than four. Use of higher order elements did not improve the results. Tissue level parameters such as maximum principal strain did not converge. Tissue level strains converged when considered relative to a threshold value, but only if the strains were evaluated at Gauss points rather than element centroids. These findings indicate that good convergence can be obtained with this modeling technique, although element size should be chosen based on factors such as loading mode, mean trabecular thickness, and the particular output parameter of interest.  相似文献   

8.
Mechanical properties of twenty human os calcanei were determined by uniaxial compression testing of bone specimens from facies articularis talaris posterior, facies articularis cuboidea, and tuber calcanei. Specimens were taken oriented perpendicular to the planes of the facies articularis, and in tuber along the presumed loading axis throughout the gait cycle. Young's modulus and strength at facies articularis cuboidea and facies articularis talaris posterior were about three times those at the tuber calcanei. The variation of the relationship between Young's modulus and apparent density indicated differences in the orientation of the trabecula, in relation to the direction of evaluation between these locations. A more detailed analysis of the topographical variation of strength within each location was made using penetration testing of a further nineteen specimens. The results of both types of measurements indicated that the major part of the load during walking is carried by facies articularis talaris posterior and facies articularis cuboidea.  相似文献   

9.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

10.
The Young's modulus of elasticity, the calcium content and the volume fraction (1-porosity) of 23 tension specimens and 80 bending specimens, taken from compact bone of 18 species of mammal, bird and reptile, were determined. There was a strong positive relationship between Young's modulus and both calcium content and volume fraction. A power law model fits the data better than a linear model. Young's modulus has a roughly cubic relationship with both calcium content and volume fraction. Over 80% of the total variation in Young's modulus in this data set is explained by these two variables.  相似文献   

11.
The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens was studied by non-destructive uniaxial compression to 0.4% strain using cylindrical specimens with different sizes and length-to-diameter ratios, and by comparing cubic and cylindrical specimens with the same cross-sectional area. Both the length and the cross-sectional area of the specimen had a highly significant influence on the mechanical behaviour (p less than 0.0001). Within the actual range of length (2.75-11.0 mm) the normalized stiffness (Young's modulus) was related nearly linearly to the specimen length. This dependency on specimen length is suggested to be caused mainly by structural disintegrity of the trabecular specimens near the surface. The normalized stiffness (Young's modulus) was also positively correlated to the cross-sectional area. This dependency on cross-sectional area is probably due to friction-induced stress inhomogeneity at the platen-specimen interface. A cube with side length 6.5 mm or a cylindrical specimen with 7.5 mm diameter and 6.5 mm length are suggested as standard specimens for comparative studies on trabecular bone mechanics.  相似文献   

12.
The objective of this study was to examine the dependence of the elastic properties of cortical bone as a transversely isotropic material on its porosity. The longitudinal Young's modulus, transverse Young's modulus, longitudinal shear modulus, transverse shear modulus, and longitudinal Poisson's ratio of cortical bone were determined from eighteen groups of longitudinal and transverse specimens using tensile and torsional tests on a servo-hydraulic material testing system. These cylindrical waisted specimens of cortical bone were harvested from the middle diaphysis of three pairs of human femora. The porosity of these specimens was assessed by means of histology. Our study demonstrated that the longitudinal Young's and shear moduli of human femoral cortical bone were significantly (p<0.01) negatively correlated with the porosity of cortical bone. Conversely, the elastic properties in the transverse direction did not have statistically significant correlations with the porosity of cortical bone. As a result, the transverse elastic properties of cortical bone were less sensitive to changes in porosity than those in the longitudinal direction. Additionally, the anisotropic ratios of cortical bone elasticity were found to be significantly (p<0.01) negatively correlated with its porosity, indicating that cortical bone tended to become more isotropic when its porosity increased. These results may help a number of researchers develop more accurate micromechanics models of cortical bone.  相似文献   

13.
Measuring the microscopic mechanical properties of bone tissue is important in support of understanding the etiology and pathogenesis of many bone diseases. Knowledge about these properties provides a context for estimating the local mechanical environment of bone related cells thait coordinate the adaptation to loads experienced at the whole organ level. The objective of this study was to determine the effects of experimental testing parameters on nanoindentation measures of lamellar-level bone mechanical properties. Specifically, we examined the effect of specimen preparation condition, indentation depth, repetitive loading, time delay, and displacement rate. The nanoindentation experiments produced measures of lamellar elastic moduli for human cortical bone (average value of 17.7 +/- 4.0 GPa for osteons and 19.3 +/- 4.7 GPa for interstitial bone tissue). In addition, the hardness measurements produced results consistent with data in the literature (average 0.52 +/- 0.15 GPa for osteons and 0.59 +/- 0.20 GPa for interstitial bone tissue). Consistent modulus values can be obtained from a 500-nm-deep indent. The results also indicated that the moduli and hardnesses of the dry specimens are significantly greater (22.6% and 56.9%, respectively) than those of the wet and wet and embedded specimens. The latter two groups were not different. The moduli obtained at a 5-nm/s loading rate were significantly lower than the values at the 10- and 20-nm/s loading rates while the 10- and 20-nm/s rates were not significantly different. The hardness measurements showed similar rate-dependent results. The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue. In addition, a significant correlation between hardness and elastic modulus was observed.  相似文献   

14.
This work consists of the validation of a novel approach to estimate the local anisotropic elastic constants of the bone extracellular matrix using nanoindentation. For this purpose, nanoindentation on two planes of material symmetry were analyzed and the resulting longitudinal elastic moduli compared to the moduli measured with a macroscopic tensile test. A combined lathe and tensile system was designed that allows machining and testing of cylindrical microspecimens of approximately 4mm in length and 300 microm in diameter. Three bovine specimens were tested in tension and their outer geometry and porosity assessed by synchrotron radiation microtomography. Based on the results of the traction test and the precise outer geometry, an apparent longitudinal Young's modulus was calculated. Results between 20.3 and 27.6 GPa were found that match with previously reported values for bovine compact bone. The same specimens were then characterized by nanoindentation on a transverse and longitudinal plane. A longitudinal Young's modulus for the bone matrix was then derived using the numerical scheme proposed by Swadener and Pharr and the fabric-elasticity relationship by Zysset and Curnier. Based on the matrix modulus and a power law effective volume fraction, an apparent longitudinal Young's modulus was predicted for each microspecimen. This alternative approach provided values between 19.9 and 30.0 GPa, demonstrating differences between 2% and 13% to the values provided by the initial tensile test. This study therefore raises confidence in our nanoindentation protocol of the bone extracellular matrix and supports the underlying hypotheses used to extract the anisotropic elastic constants.  相似文献   

15.
We compare theoretical predictions of the effective elastic moduli of cortical bone at both the meso- and macroscales. We consider the efficacy of three alternative approaches: the method of asymptotic homogenization, the Mori-Tanaka scheme and the Hashin-Rosen bounds. The methods concur for specific engineering moduli such as the axial Young's modulus but can vary for others. In a past study, the effect of porosity alone on mesoscopic properties of cortical bone was considered, taking the matrix to be isotropic. Here, we consider the additional influence of the transverse isotropy of the matrix. We make the point that micromechanical approaches can be used in two alternative ways to predict either the macroscopic (size of cortical bone sample) or mesoscopic (in between micro- and macroscales) effective moduli, depending upon the choice of representative volume element size. It is widely accepted that the mesoscale behaviour is an important aspect of the mechanical behaviour of bone but models incorporating its effect have started to appear only relatively recently. Before this only macroscopic behaviour was addressed. Comparisons are drawn with experimental data and simulations from the literature for macroscale predictions with particularly good agreement in the case of dry bone. Finally, we show how predictions of the effective mesoscopic elastic moduli can be made which retain dependence on the well-known porosity gradient across the thickness of cortical bone.  相似文献   

16.
17.
Compact bone specimens from many species were examined to determine the relationships, in tension, between mineral content, Young's modulus, yield stress, yield strain, post-yield stress, post-yield strain, ultimate stress, ultimate strain and work under the stress-strain curve. Yield strain varied much less than the post-yield strain, and yield stress was strongly dependent on Young's modulus. Mineral content was a rather poor predictor of yield stress. However, post-yield events were predicted better by mineral (calcium) content than by Young's modulus. The greater the mineral content the less the post-yield work under the curve and the less the increase in post-yield stress and strain. The findings are compared with those of Les et al. who compressed specimens from equine metacarpals. Where they can be compared, the results are consistent with each other.  相似文献   

18.
G Olchowik 《Cytobios》2001,105(410):147-152
This work deals with the mutual action of hydrocortisone and low intensity microwave radiation (MWR) on the bone tissue of rats. The bone density and velocity of ultrasound was measured in order to evaluate the Young's modulus of the femur. The results show a stimulating effect of the low-intensity MWR field on regeneration of the bone tissue of rats. The MWR, during a long application of hydrocortisone, may be a characteristic protective factor for the bone tissue.  相似文献   

19.
Stiffness degradation and strength degradation are often measured to monitor and characterize the effects of damage accumulation in bone. Based on evidence that these properties could be affected by not only damage magnitude but also test conditions, the present study investigated the effect of hold condition and recovery time on measures of tensile damage. Machined human femoral cortical bone specimens were subjected to tensile tests consisting of a pre-damage diagnostic loading cycle, a damage loading cycle and post-damage cycle. Controlled variables were recovery time (1, 10, and 100 min) and hold condition (zero load or zero strain) after the damage cycle. Damage measures were calculated as the ratio of each post-damage cycle to the pre-damage value for loading modulus, secant modulus, unloading modulus, stress relaxation and strain (stress) recovery at 1 min post-diagnostic time. The damage cycle caused reductions in all measures, and some measures varied with recovery time and hold condition. Apparent modulus degradation for both hold conditions decreased with recovery time. Stress relaxation was unaffected by recovery time for both hold conditions. Zero-strain hold conditions resulted in lower values for degradation of modulus and change of relaxation. Stress or strain recovery after the damage cycle was evident through 100 min, but 90% of the recovery occurred within 10 min. The results demonstrate that choice of test conditions can influence the apparent magnitude of damage effects. They also indicate that 10 min recovery time was sufficient to stabilize most measures of the damage state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号