首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
daughterless-abo-like (dal) is a maternal-effect semilethal mutation in Drosophila. The nuclear divisions of embryos derived from homozygous dal females are normal through nuclear cycle 10. However, during nuclear cycles 11, 12 and 13, a total of about half of the nuclei in each embryo either fail to divide or fuse with a neighboring nucleus during telophase. These abnormal nuclei eventually sink into the interior of the embryo, leaving their centrosomes behind on the surface. The loss of about one-half of the peripheral nuclei into the interior of the embryo results in these embryos cellularizing during nuclear cycle 14 with about one-half the normal number of cells. Surprisingly, many of these embryos develop a nearly normal larval cuticle and 8% develop to adulthood. Observations of live embryos doubly injected with tubulin and histones that have been fluorescently labeled allows nuclear and centrosomal behavior to be directly followed as the embryo develops. We find that the abnormal nuclei arise from nuclei whose centrosomes have failed to separate normally in the previous interphase. These incompletely separated centrosomes can cause a non-functional spindle to form, leading to a nuclear division failure. Alternatively, they can form an abnormal spindle with a centrosome from a neighboring nucleus, causing two nuclei to share a common spindle pole. Such nuclei with a shared centrosome will undergo telophase fusions, unequal divisions, or division failures later in mitosis. These findings have helped us to understand the function of the centrosome in the Drosophila embryo.  相似文献   

2.
3.
BACKGROUND: Successful cell duplication requires orderly progression through a succession of dramatic cell-cycle events. Disruption of this precise coupling can compromise genomic integrity. The coordination of cell-cycle events is thought to arise from control by a single master regulator, cyclin:Cdk, whose activity oscillates. However, we still know very little of how individual cell-cycle events are coupled to this oscillator and how the timing of each event is controlled. RESULTS: We developed an approach with RNA interference (RNAi) and real-time imaging to study cyclin contributions to the rapid syncytial divisions of Drosophila embryos. Simultaneous knockdown of all three mitotic cyclins blocked nuclei from entering mitosis. Despite nuclear arrest, centrosomes and associated myosin cages continued to divide until the midblastula transition. Centrosome division was synchronous throughout the embryo and the period of the uncoupled duplication cycle increased over successive divisions. In contrast to its normal actions, injection of a competitive inhibitor of the anaphase-promoting complex/cyclosome (APC/C) after knockdown of the mitotic cyclins did not interfere with the centrosome-duplication cycles. Finally, we examined how cyclin knockdown affects the onset of cellularization at the midblastula transition and found that nuclear cell-cycle arrest did not advance or delay onset of cellularization. CONCLUSIONS: We show that knockdown of mitotic cyclins allows centrosomes to duplicate in a cycle that is uncoupled from other cell-cycle events. We suggest that high mitotic cyclin normally ensures that the centrosome cycle remains entrained to the nuclear cycle.  相似文献   

4.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

5.
One of the first signs of cell differentiation in the Drosophila melanogaster embryo occurs 3 h after fertilization, when discrete groups of cells enter their fourteenth mitosis in a spatially and temporally patterned manner creating mitotic domains (Foe, V. E. and G. M. Odell, 1989, Am. Zool. 29:617-652). To determine whether cell residency in a mitotic domain is determined solely by cell position in this early embryo, or whether cell lineage also has a role, we have developed a technique for directly analyzing the behavior of nuclei in living embryos. By microinjecting fluorescently labeled histones into the syncytial embryo, the movements and divisions of each nucleus were recorded without perturbing development by using a microscope equipped with a high resolution, charge-coupled device. Two types of developmental maps were generated from three-dimensional time-lapse recordings: one traced the lineage history of each nucleus from nuclear cycle 11 through nuclear cycle 14 in a small region of the embryo; the other recorded nuclear fate according to the timing and pattern of the 14th nuclear division. By comparing these lineage and fate maps for two embryos, we conclude that, at least for the examined area, the pattern of mitotic domain formation in Drosophila is determined by the position of each cell, with no effect of cell lineage.  相似文献   

6.
A T-DNA-tagged, embryo-defective Arabidopsis thaliana mutant, fist, was identified and shown to exhibit defects in nuclear positioning and cell division orientation beginning at the four-cell stage of the embryo proper. Cell division orientation was randomised, with each embryo exhibiting a different pattern. Periclinal divisions did not occur after the eight-cell embryo proper stage and fist embryos lacked a histologically distinct protoderm layer. Terminal embryos resembled globular-stage embryos, but were a disorganised mass containing 30–100 cells. Some terminal embryos (5%) developed xylem-like elements in outer surface cells, indicating that the fist mutation affects radial pattern. A soybean β-conglycinin seed storage protein gene promoter, active in wild-type embryos from heart stage to maturity, was also active in terminal fist embryos despite their disorganised globular state. This indicated that some pathways of cellular differentiation in fist embryos proceed independently of both organised division plane orientation and normal morphogenesis. Endosperm morphogenesis in seeds containing terminal fist embryos was arrested at one of three distinct developmental stages and appeared unlinked to fist embryo morphogenesis. The β-conglycinin seed storage protein gene promoter, normally active in cellularised wild-type endosperm, was inactive in fist endosperm, indicating abnormal development of fist endosperm at the biochemical level. These data indicate that the fist mutation, either directly or indirectly, results in defects in cell division orientation during the early stages of Arabidopsis embryo development. Other aspects of the fist phenotype, such as defects in endosperm development and radial pattern formation, may be related to abnormal cell division orientation or may occur as pleiotropic effects of the fist mutation. Received: 15 July 1997 / Accepted: 9 September 1997  相似文献   

7.
Embryos of the brown alga Fucus vesiculosas L. were grown as populations in glass petri dishes in seawater at 15 C in continuous low-intensity unilateral fluorescent illumination for periods up to 2 weeks. A quantitative estimate of increase in nuclear number was made from acetocarmine squash preparations of samples taken at 12-or-24 hr intervals. Over the period of 2-6 days embryos showed a doubling time of about 12-18 hr. Under normal seawater culture conditions each embryo formed a single rhizoid. When grown in seawater supplemented with sugar concentrations above 0.4 m , Fucus embryos developed as multicellular spherical embryos lacking rhizoids. In 0.6 m sucrose-seawater, 97% of the embryos were apolar at 2 days; only 37% were apolar at 4 days, many having recovered from the sucrose inhibition. Some embryos remained apolar after growth in 0.6 m sucrose for 2 weeks. Nuclear counts showed that sucrose-seawater markedly inhibited the rate of cell division. Other sugars including D-glucose, D-fructose, D-galactose and the sugar alcohol D-mannitol were also effective. When apolar embryos grown in sucrose-seawater were returned to seawater, embryo growth resumed at the normal seawater rate, judged from nuclear counts. Such embryos formed multiple rhizoids, varying from two to eight rhizoids per embryo, which developed on the embryo quadrant or half away from the unilateral light. Each of the multiple rhizoids originated from a single small cell in the periphery of the multicellular spherica embryo. Thus the rhizoid-forming stimulus apparently had been subdivided among a number of the cells of the apolar embryos. The implications of this finding are discussed. Attempts to produce multiple rhizoids by treatment of embryos with indoleacetic acid or 2,4-dichlorophen-oxyacetic acid failed. However, embryos treated with 10−4 M or 5 × 10−5 m 2,3,5-triiodobenzoic acid formed 40 and 30% multiple rhizoids, respectively, suggesting that some chemical, perhaps hormonal, mechanism is involved in polarization and rhizoid initiation in Fucus embryogenesis.  相似文献   

8.
9.
The objective of this study is to induce the nuclear DNA duplication of anther-derived embryos of cork oak (Quercus suber L.) to obtain doubled-haploid plants. Anther culture of this species produces a low percentage (7.78%) of spontaneous diploids, as assessed by flow cytometry. Therefore, three antimitotic agents, colchicine, oryzalin and amiprophos-methyl (APM), were applied in vitro to anther-derived cork oak haploid embryos from six genotypes at different concentrations and for different treatment durations. Antimitotic toxicity was determined by embryo survival. Efficiency in inducing chromosome doubling of haploid embryos was evaluated by flow cytometry measurements and differences were observed between treatments. Nuclear DNA duplication and embryo survival of cork oak haploid embryos was most efficiently induced with oryzalin 0.01 mM for 48 h. Around 50% diploid embryos were obtained. The rate of chromosome duplication induced by APM 0.01 mM was also acceptable but lower than that induced by oryzalin, regardless of the duration of the treatment. Colchicine 1.3 or 8.8 mM was the least efficient, with the induction of necrosis and only a small rate of nuclear DNA duplication.  相似文献   

10.
Current hypotheses concerning the role of polar auxin transport in embryo development are entirely based on studies of angiosperms, while little is known about how auxin regulates pattern formation in gymnosperms. In this study, different developmental stages of somatic embryos of Norway spruce (Picea abies) were treated with the polar auxin transport inhibitor 1-N-naphtylphthalamic acid (NPA). Effects of the treatments on auxin content, embryo differentiation and programmed cell death (PCD) were analysed. During early embryo development, NPA-treatment led to increased indole-3-acetic acid (IAA) content, abnormal cell divisions and decreased PCD, resulting in aberrant development of embryonal tube cells and suspensors. Mature embryos that had been treated with NPA showed both apical and basal abnormalities. Typically the embryos had abnormal cotyledon formation and irregular cell divisions in the area of the root meristem. Our results show that polar auxin transport is essential for the correct patterning of both apical and basal parts of conifer embryos throughout the whole developmental process. Furthermore, the aberrant morhologies of NPA-treated spruce embryos are comparable with several auxin response and transport mutants in Arabidopsis. This suggests that the role of polar auxin transport is conserved between angiosperms and gymnosperms.  相似文献   

11.
《The Journal of cell biology》1995,129(6):1575-1588
The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three- dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.  相似文献   

12.
13.
M Barr 《Teratology》1982,25(2):153-159
The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.  相似文献   

14.
In vitro development of ovine embryos in CZB medium   总被引:1,自引:0,他引:1  
One- to four-cell embryos were collected from multiparous crossbred ewes and were cultured in vitro for 120 hours in CZB medium. A 2x2 factorial treatment arrangement was used to examine the effects of glucose and ethylenediaminetetraacetic acid (EDTA) on in vitro embryo development. The embryos were examined every 12 hours, and all of the embryos were stained with a DNA-specific fluorochrome after the 120-hour evaluation to enable the counting of cell nuclei. Embryo development was analyzed for cleavage beyond 16 cells as well as for cleavage to at least the compact morula stage based upon both the 120-hour morphological evaluation and nuclear counts. Forty-eight percent of the embryos passed through the in vitro developmental block (i.e., cleaved beyond 16 cells), and 26% developed to 30 or more cells. Neither EDTA nor glucose affected in vitro embryo development based on the nuclear counts.  相似文献   

15.
The early stages of embryo development in Gossypium hirsutum (cotton) and Capsella bursapastoris were examined with regard to patterns of cell development, embryo and cell size, and distribution of cell divisions. A striking reduction in the total size of the cotton embryo was observed following the first division of the embryo. This decrease in total embryo size continued for several more divisions, and it was not until the embryo contained approximately 75 cells that its total size was larger than the zygote. Distinctive patterns of cell divisions were found in both embryos and indicate that changes in groups of cells undergoing mitosis are of fundamental importance in understanding the development of form in the embryo. A greater degree of variation in development of cell lineages than is generally reported was observed in both embryos.  相似文献   

16.
In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.  相似文献   

17.
Huang BQ  Sheridan WF 《The Plant cell》1996,8(8):1391-1407
The indeterminate gametophyte1 mutation in maize has been known to disrupt development of the female gametophyte. Mutant embryo sacs have abnormal numbers and behavior of micropylar and central cell nuclei, which result in polyembryony and elevated ploidy levels in the endosperm of developing kernels. In this study, we confirm abnormal nuclear behavior and present novel findings. In contrast to the normal form, there is no obvious polarity in two-nucleate embryo sacs or in the micropylar cells of eight-nucleate embryo sacs. We show that the second and third mitoses are not fully synchronized and that additional mitoses can occur in all of the nuclei of the mutant embryo sac or in just the micropylar or central regions. After cellularization, individual micropylar cells can undergo mitosis. Abnormal microtubular behavior results in irregular positioning of the nuclei, asynchronous microtubular patterns in different pairs of nuclei, and abnormal phragmoplasts after the third mitotic division. These results indicate that in addition to acting primarily in controlling nuclear divisions, the indeterminate gametophyte1 gene acts secondarily in regulating microtubule behavior. This cytoskeletal activity most likely controls the polarization and nuclear migration underlying the formation and fate of the cells of the normal embryo sac.  相似文献   

18.
The chromosomes in the cells of 1–2-day-old cod embryos were studied using light microscopic techniques. The observations revealed slightly non-synchronous cell divisions, with at least three different mitotic phases present in a 1-day-old embryo. Surprisingly high percentages of abnormal metaphases and anaphases were found in normal-looking embryos. In the 2-day-old embryos, free-lying nuclei were observed in the periblast zone. Chromosome studies of these nuclei revealed a cleavage pattern of the chromosomes which differed from that of the other cells.  相似文献   

19.
Summary To investigate the mechanisms of seed failure in intraspecific and interspecific crosses of Solanum two diploid, S. commersonii and Group Phureja, and one tetraploid species, S. acaule, species were crossed and the seeds were analyzed for embryo and endosperm development. Many seeds of certain crosses observed seven days after pollinations were found to contain abnormal embryos and degenerating endosperms. In some cases seeds contained an embryo with no endosperm, or an endosperm with no embryo. Other interspecific crosses which were predicted to fail actually produced seeds with normally developed embryos and endosperms. To further characterize the intra- and interspecific embryos and endosperms the nuclear DNA was measured. There are several ways to explain the ploidy levels of embryos and endosperms among the crosses, the occurrence of unreduced gametes in some cases and genomic instability in other cases. The latter resulted in chromosome loss at meiotic and mitotic divisions. Genomic balance in interspecific seeds is critical to both embryo and endosperm development.Scientific Journal Series Article No. 14636 of the Minnesota Experiment Station  相似文献   

20.
Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-d-Glc)3 Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号