首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experience dictates stem cell fate in the adult hippocampus   总被引:1,自引:0,他引:1  
Adult hippocampal neurogenesis has been implicated in cognitive and emotional processes, as well as in response to antidepressant treatment. However, little is known about how the adult stem cell lineage contributes to hippocampal structure and function and how this process is modulated by the animal's experience. Here we perform an indelible lineage analysis and report that neural stem cells can produce expanding and persisting populations of not only neurons, but also stem cells in the adult hippocampus. Furthermore, the ratio of stem cells to neurons depends on experiences of the animal or the location of the stem cell. Surprisingly, social isolation facilitated accumulation of stem cells, but not neurons. These results show that neural stem cells accumulate in the adult hippocampus and that the stem cell-lineage relationship is under control of anatomic and experiential niches. Our findings suggest that, in the hippocampus, fate specification may act as a form of cellular plasticity for adapting to environmental changes.  相似文献   

2.
Simons BD  Clevers H 《Cell》2011,145(6):851-862
In adult tissues, an exquisite balance exists between stem cell proliferation and the generation of differentiated offspring. Classically, it has been argued that this balance is obtained at the level of a single stem cell, which divides strictly into a new stem cell and a progenitor. However, recent evidence suggests that balance can also be achieved at the level of the stem cell population. Some stem cells might be lost due to differentiation or damage, whereas others divide symmetrically to fill this gap. Here, we consider the general strategies for stem cell self-renewal and review the evidence for stochastic stem cell fate in adult tissues across a range of tissue types and organisms.  相似文献   

3.
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.  相似文献   

4.
5.
Li Q  Gregory RI 《Cell Stem Cell》2008,2(3):195-196
MicroRNAs modulate target gene expression and are essential for normal development, but how does this pathway impact cell fate decisions? In this issue of Cell Stem Cell, Ivey et al. (2008) find that muscle-specific microRNAs repress nonmuscle genes to direct embryonic stem cell differentiation to mesoderm and muscle.  相似文献   

6.
7.
8.
Comment on: Takizawa H, et al. J Exp Med 2011; 208:273-84.  相似文献   

9.
Epigenetic control of neural stem cell fate   总被引:18,自引:0,他引:18  
  相似文献   

10.
Redox regulation of plant stem cell fate   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS‐metabolizing enzymes. The superoxide anion () is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates biosynthesis in stem cells, and increasing H2O2 levels or scavenging leads to the termination of stem cells. Our results provide a mechanistic framework for ROS‐mediated control of plant stem cell fate and demonstrate that the balance between and H2O2 is key to stem cell maintenance and differentiation.  相似文献   

11.
The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate.  相似文献   

12.
Towards predictive models of stem cell fate   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
《Developmental cell》2022,57(5):610-623.e8
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
17.
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.  相似文献   

18.
张静 《生物学杂志》2005,22(4):64-64
近年来干细胞移植治疗心肌损伤、脑损伤和肝硬化等疾病已经成为研究热点,其成果令人鼓舞。胚胎干细胞(ESC)虽然具有无可非议的多向分化潜能,但如何使移植ESC在增殖能力、无致瘤性和分化潜能之间保持微妙的平衡,以及如何处理医学伦理、移植物排斥等问题都没有得到很好的解决。与ESC相比,从临床的角度成体干细胞(adult stem cell,ASC)更为大家所关注,ASC存在于骨髓、肌肉等多种器官、组织中,在器官和组织的自我修复和再生活动中发挥着重要的作用。采用自身ASC进行移植,更可完全避免移植后的免疫排斥反应。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号