首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以开花期的椒样薄荷(Mentha × piperita)、薄荷(M. haplocalyx)和苏格兰留兰香(M. × gentilis)叶片部位提取的精油为研究对象, 通过GC-MS分析, 并采用纸片扩散法研究了3种精油单独使用及与抗生素联合使用时对金黄色葡萄球菌、蜡状芽孢杆菌、大肠杆菌、绿脓杆菌和肺炎克雷伯氏菌的抑制情况。结果表明, (1) 椒样薄荷与薄荷精油中含量最高的成分为薄荷醇、薄荷酮和异薄荷酮, 苏格兰留兰香精油的主要成分为香芹酮和柠檬烯。薄荷和苏格兰留兰香精油符合欧洲药典与ISO标准, 椒样薄荷需要继续改良以提高其精油品质与抑菌功能。(2) 精油单独使用时, Pseudomonas aeruginosa ATCC 15442对椒样薄荷精油和薄荷精油敏感; P. aeruginosa ATCC 27853对薄荷精油和苏格兰留兰香精油敏感。精油与抗生素联合使用时抑菌范围和强度均有所改变: 绿脓杆菌的2个菌株对精油与抗生素的组合最为敏感, 其中, 椒样薄荷精油与头孢他啶的组合对P. aeruginosa ATCC 15442显示出最强的增效作用, 薄荷精油与头孢他啶混合之后对P. aeruginosa ATCC 27853出现拮抗作用。Staphylococcus aureus ATCC 25923对所有精油以及精油与抗生素混合物均有抗性。(3) 椒样薄荷、薄荷和苏格兰留兰香精油的不同成分及其含量差异不仅对精油品质有影响, 而且影响精油对测试菌种的抑制作用, 可考虑将其作为薄荷属植物品质育种的参考指标。  相似文献   

2.
以开花期的椒样薄荷(Mentha×piperita)、薄荷(M.haplocalyx)和苏格兰留兰香(M.×gentilis)叶片部位提取的精油为研究对象,通过GC-MS分析,并采用纸片扩散法研究了3种精油单独使用及与抗生素联合使用时对金黄色葡萄球菌、蜡状芽孢杆菌、大肠杆菌、绿脓杆菌和肺炎克雷伯氏菌的抑制情况。结果表明,(1)椒样薄荷与薄荷精油中含量最高的成分为薄荷醇、薄荷酮和异薄荷酮,苏格兰留兰香精油的主要成分为香芹酮和柠檬烯。薄荷和苏格兰留兰香精油符合欧洲药典与ISO标准,椒样薄荷需要继续改良以提高其精油品质与抑菌功能。(2)精油单独使用时,Pseudomonas aeruginosa ATCC15442对椒样薄荷精油和薄荷精油敏感;P.aeruginosa ATCC27853对薄荷精油和苏格兰留兰香精油敏感。精油与抗生素联合使用时抑菌范围和强度均有所改变:绿脓杆菌的2个菌株对精油与抗生素的组合最为敏感,其中,椒样薄荷精油与头孢他啶的组合对P.aeruginosa ATCC15442显示出最强的增效作用,薄荷精油与头孢他啶混合之后对P.aeruginosa ATCC27853出现拮抗作用。Staphylococcus aureus ATCC25923对所有精油以及精油与抗生素混合物均有抗性。(3)椒样薄荷、薄荷和苏格兰留兰香精油的不同成分及其含量差异不仅对精油品质有影响,而且影响精油对测试菌种的抑制作用,可考虑将其作为薄荷属植物品质育种的参考指标。  相似文献   

3.
This study investigated the antibacterial activities of sophoraflavanone G from Sophora flavescens in combination with two antimicrobial agents against oral bacteria. The combined effect of sophoraflavanone G and the antimicrobial agents was evaluated using the checkerboard method to obtain a fractional inhibitory concentration (FIC) index. The sophoraflavanone G+ampicillin (AM) combination was found to have a synergistic effect against S. mutans, S. sanguinis, S. sobrinus, S. gordonii, A. actinomycetemcomitans, F. nucleatum, P. intermedia, and P. gingivalis, whereas the sophoraflavanone G+gentamicin (GM) combination had a synergistic effect against S. sanguinis, S. criceti, S. anginosus, A. actinomycetemcomitans, F. nucleatum, P. intermedia, and P. gingivalis. Neither combination exhibited any antagonistic interactions (FIC index >4). In particular, the MICs/MBCs for all the bacteria were reduced to one-half - one-sixteenth as a result of the drug combinations. A synergistic interaction was also confirmed by time-kill studies for nine bacteria where the checkerboard suggested synergy. Thus, a strong bactericidal effect was exerted through the drug combinations, plus in vitro data suggested that sophoraflavanone G combined with other antibiotics may be microbiologically beneficial rather than antagonistic.  相似文献   

4.
The influenza virus is highly contagious in human populations around the world and results in approximately 250,000–500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.  相似文献   

5.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

6.
Chitosan and its derivative water soluble Chitosan oligosaccharide are used in a variety of applications in pharmaceutical preparations. In this study, 2 wild (ATCC 15729 and PAO1) and 2 mutant strains (PT121 and PT149) of P. aeruginosa are investigated for drug-drug interactions in vitro. 10 antimicrobial agents (antibiotics) are combined with different degree of deacetylated Chitosans and Chitosan oligosaccharide. All the chitosans show synergistic activity with sulfamethoxazole, a sulfonamide antimicrobial agent. It is interesting to observe that the MIC value for the MexEF-OprN overexpressing mutant strain of P. aeruginosa is 5 fold higher than the other strains under investigation suggesting a possible role of this efflux pump in Sulfamethoxazole efflux. The findings suggest on the use of chitosans as enhancing agent in combination with antibiotics in pharmaceutical preparations.  相似文献   

7.
Mecillinam was tested in vitro alone or in combination with piperacillin-tazobactam and azithromycin against representative species of the Enterobacteriaceae family and Pseudomonas aeruginosa to extend its antibacterial spectrum, and to protect mecillinam from inactivating enzymes taking advantage of the presence of tazobactam. Drug interactions were studied by microdilution method, by selection of spontaneous resistant mutants on agar plates containing the drugs in combination and by time kill experiments. Against Enterobacteriaceae mecillinam and piperacillin-tazobactam showed synergistic interaction in 24/60 tests carried out by microdilution technology, in 4/16 by selecting resistant mutants and in 5/9 by time-kill experiments. P. aeruginosa reacted indifferently to the drug combinations, with few exceptions, when azithromycin was present a reduction of the MICs were recorded. Mecillinam reacted favourably in vitro in combination with piperacillin-tazobactam against not only strains included in its antibacterial spectrum but also against resistant Morganella morganii, Proteus spp and P. aeruginosa. The addition of azithromycin (8 mg/L) was beneficial for the drug combination increasing the bactericidal effect in the great majority of the cases. Only systematic in vivo studies may establish the clinical significance and benefits of the present observations.  相似文献   

8.
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.  相似文献   

9.
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed.  相似文献   

10.
The aim of this study was to evaluate the antibacterial effect of the association between conventional antibiotics and essential oils (EOs) of endemic Moroccan thyme species, Thymus maroccanus and T. broussonetii, on antibiotic-resistant bacteria involved in nosocomial infections. Synergistic interactions between antibiotics (ciprofloxacin, gentamicin, pristinamycin, and cefixime) and EOs, and between T. maroccanus and T. Broussonetii EOs were determined by the checkerboard test. Serial dilutions of two antimicrobial agents were mixed together so that each row (and column) contained a fixed amount of the first agent and increasing amounts of the second one. The results indicate that the oils had a high inhibitory activity against tested bacteria, except for Pseudomonas aeruginosa. In parallel with the increase of cellular killing, the release of 260nm-absorbing materials from bacterial cells, treated with EOs, increased in response to oil concentration. Out of 80 combinations tested between EOs and antibiotics, 71% showed total synergism, 20% had partial synergistic interaction and 9% showed no effect. Combination with carvacrol, the major constituent of T. maroccanus and T. broussonetii, showed also an interesting synergistic effect in combination with ciprofloxacin. The effect on Gram-positive bacteria was more important than on Gram-negative bacteria. These findings are very promising since the use of these combinations for nosocomial infections treatment is likely to reduce the minimum effective dose of the antibiotics, thus minimizing their possible toxic side effects and treatment cost. However, further investigations are needed to assess the potential for therapeutic application.  相似文献   

11.
A phytochemical investigation of the aerial parts of Euphorbia formosana Hayata resulted in the isolation of 33 compounds, including various derivatives of ellagic acid and gallic acid. The chemical structures were elucidated by spectroscopic methods and comparison with relevant data from the literature. The chemotaxonomic significance and distribution of these derivatives of ellagic acid and gallic acid in the genus Euphorbia are discussed.  相似文献   

12.
Cancer chemoprevention with low-dose combinations of bioactive phytochemicals instead of single agents has been suggested to induce less toxicity and improve efficacy. In this study, we selected four plant food-based phytochemicals, viz. chlorogenic acid (CLA), pelargonidin (PEL), resveratrol (RES) and epigallocatechin gallate (EGCG) to evaluate the in vitro chemoprevention of genotoxic damage in HL-60 cells. These agents were tested either individually or as a combination at two concentrations (with a 10-fold difference) against the genotoxins mitomycin C (MMC), diepoxybutane (DEB) and patulin (PAT). Our preliminary ferric reducing antioxidant power (FRAP) assay demonstrated additive effects when PEL, CLA, RES and EGCG were combined. Results of the cytokinesis-block micronucleus test showed significant protection against genotoxic damage induced by PAT, DEB and MMC when CLA, PEL, RES and EGCG were tested individually. This protective effect of the phytochemicals was not concentration-related. Both low- and high-concentration combinations of CLA, PEL, RES and EGCG showed significant reducing effects on the frequencies of micronuclei induced by PAT, DEB and MMC. However, the micronucleus test did not provide indications of additive or synergistic effects with this combination of phytochemicals. In conclusion, the chemo-preventive effects of PEL, CLA, RES and EGCG against genotoxic damage induced by MMC, DEB and PAT are indicative of a 'saturation effect' when higher concentrations and combinations of these phytochemicals are used.  相似文献   

13.
It is standard clinical practice to use a combination of two or more antimicrobial agents to treat an infection caused by Pseudomonas aeruginosa. The antibiotic combinations are usually selected empirically with methods to determine the antimicrobial effect of the combination such as the time-kill assay rarely used as they are time-consuming and labour intensive to perform. Here, we report a modified time-kill assay, based on the reduction of the tetrazolium salt, 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT), that allows simple, inexpensive and more rapid determination of the in vitro activity of antibiotic combinations against P. aeruginosa. The assay was used to determine the in vitro activity of ceftazidime and tobramycin in combination against P. aeruginosa isolates from cystic fibrosis patients and the results obtained compared with those from conventional viable count time-kill assays. There was good agreement in interpretation of results obtained by the XTT and conventional viable count assays, with similar growth curves apparent and the most effective concentration combinations determined by both methods identical for all isolates tested. The XTT assay clearly indicated whether an antibiotic combination had a synergistic, indifferent or antagonistic effect and could, therefore, provide a useful method for rapidly determining the activity of a large number of antibiotic combinations against clinical isolates.  相似文献   

14.
Background: Antibiotic-resistant bacteria pose a global health threat. Traditional antibiotics can lose their effectiveness, and the development of novel effective antimicrobials has become a priority in recent years. In this area, plants represent an invaluable source of antimicrobial compounds with vast therapeutic potential.Purpose: To review the full possible spectrum of plant antimicrobial agents (plant compounds, extracts and essential oils) discovered from 2016 to 2021 and their potential to decrease bacterial resistance. Their activities against bacteria, with special emphasis on multidrug resistant bacteria, mechanisms of action, possible combinations with traditional antibiotics, roles in current medicine and future perspectives are discussed.Methods: Studies focusing on the antimicrobial activity of compounds of plant origin and their mechanism of action against bacteria were identified and summarized, including contributions from January 2016 until January 2021. Articles were extracted from the Medline database using PubMed search engine with relevant keywords and operators.Results: The search yielded 11,689 articles from 149 countries, of which 101 articles were included in this review. Reports from 41 phytochemicals belonging to 20 families were included. Reports from plant extracts and essential oils from 39 plant species belonging to 17 families were also included. Polyphenols and terpenes were the most active phytochemicals studied, either alone or as a part of plant extracts or essential oils. Plasma membrane disruption was the most common mechanism of antimicrobial action. Number and position of phenolic hydroxyl groups, double bonds, delocalized electrons and conjugation with sugars in the case of flavonoids seemed to be crucial for antimicrobial capacity. Combinations of phytochemicals with beta-lactam antibiotics were the most studied, and the inhibition of efflux pumps was the most common synergistic mechanism.Conclusion: In recent years, terpenes, flavones, flavonols and some alkaloids and phenylpropanoids, either isolated or as a part of extracts, have shown promising antimicrobial activity, being membrane disruption their most common mechanism. However, their utilization as appropriate antimicrobials need to be boosted by means of new omics technologies and network pharmacology to find the most effective combinations among them or in combination with antibiotics.  相似文献   

15.
The effect of combinations of penicillin, tetracycline and rifampicin on R. prowazekii (the causative agent of typhus) and R. sibirica (the causative agent of tick-borne rickettsiosis of the North Asia) was studied. It was shown that tetracycline and penicillin used in combination had a summation effect on both R. sibirica and R. prowazekii. The dose of each antibiotic was 2 times lower than the doses of the antibiotics used alone. However, R. sibirica was less sensitive to this combination than R. prowazekii: the minimum rickettsiocidic doses of the combination were 0.5 mg of tetracycline + 10000 units of penicillin per embryo with respect to R. sibirica and 0.1 mg of tetracycline + 10000 units of penicillin per embryo with respect to R. prowazekii. The combinations of rifampicin with penicillin or tetracycline in the concentrations used had no rickettsiocidic effect on either R. sibirica or R. prowazekii. However, it should be noted that these combinations had a synergistic action and provided a rickettsiostatic effect on R. prowazekii: the dose of rifampicin in its combination with penicillin was decreased 10 times and in the combination of rifampicin with tetracycline the doses of both rifampicin and tetracycline were decreased 10 times. Still, penicillin even in a dose of 20000 units per embryo had only a rickettsiostatic effect on R. sibirica and R. prowazekii.  相似文献   

16.
Emergence of multidrug-resistant Acinetobacter baumannii (MDRAB) has become a critical clinical problem worldwide and limited therapeutic options for infectious diseases caused by MDRAB. Therefore, there is an urgent need for the development of new antimicrobial agents or alternative therapy to combat MDRAB infection. The aim of this study was to investigate effects of Mastoparan-AF (MP-AF), an amphipathic peptide isolated from the hornet venom of Vespa affinis with broad-spectrum antimicrobial activity, on MDRAB. As compared with clinical used antibiotics, MP-AF exhibited potent antimicrobial activity at 2–16 μg/ml against the reference strain A. baumannii ATCC 15151 and seven MDRAB clinical isolates, especially the colistin-resistant MDRAB, E0158. The synergistic antimicrobial combination study revealed that MP-AF acted synergistically with specific antibiotics, e.g., ciprofloxacin, trimethoprim/sulfamethoxazole (SXT) or colistin against some isolates of the MDRAB. It was noteworthy when MP-AF combined with SXT exhibited synergistic activity against all SXT-resistant MDRAB isolates. The synergistic combination of MP-AF and antibiotics could reduce the dosage recommended of each antimicrobial agent and improve the safety of medications with ignorable adverse effects, such as colistin with nephrotoxicity in therapeutic dose. Furthermore, MP-AF combined with antibiotics with different antimicrobial mechanisms could reduce selective pressure of antibiotics on bacteria and prevent the emergence of antimicrobial-resistant strains. Importantly, we are the first finding that MP-AF could make MDRAB from the original non-susceptibility to SXT become sensitivity. In conclusion, MP-AF alone or in combination with other antibiotics, especially SXT, is a potential candidate against MDRAB infection in clinical medicine.  相似文献   

17.
Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml?1 + 0.312 μg ml?1) was determined to effectively inhibit biofilm formation by P. acnes (80–91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20–26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.  相似文献   

18.
The investigation of Tylosema esculentum (Morama) husks, cotyledons, and tuber yielded griffonilide 2, compound 1, griffonin 3, gallic acid 4, protocatechuic acid 5, β-sitosterol 6, behenic acid 7, oleic acid 8, sucrose 9, 2-O-ethyl-α-D-glucopyranoside 10, kaempferol 11 and kaempferol-3-O-β-D-glucopyranoside 12. The structures of the isolates were determined by NMR, HR-TOF EIMS, IR and UV-vis spectroscopy, and by comparison with literature data. The husk EtOAc and n-butanol extracts demonstrated >90% DPPH radical scavenging activity at concentrations of 25, 50 and 250 μg/mL. Furthermore the husk extracts showed higher total phenolic content (233 mg GAE/g). The extractives exhibited minimum inhibitory quantities of 50-100 μg or no activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans. The tuber extracts were inactive against Caco-2 and Hela cell lines, while the husk extracts showed low activity against Caco-2 and Vero cell line with IC(50) values >400 μg/mL. The GC-MS analysis showed the beans and tuber non-polar (n-hexane) extracts major constituents as fatty acids.  相似文献   

19.
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.  相似文献   

20.
Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号