首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
A characteristic of many enteropathies is increased epithelial permeability, a potentially pathophysiological event that can be evoked by T helper (Th)-1 (i.e., IFN-gamma) and Th2 (i.e., IL-4) cytokines and bacterial infection [e.g., enteropathogenic Escherichia coli (EPEC)]. The green tea polyphenol (-)-epigallocatechin gallate (EGCG) has immunosuppressive properties, and we hypothesized that it would ameliorate the increased epithelial permeability induced by IFN-gamma, IL-4, and/or EPEC. EGCG, but not the related epigallocatechin, completely prevented the increase in epithelial (i.e., T84 cell monolayer) permeability caused by IFN-gamma exposure as gauged by transepithelial resistance and horseradish peroxidase flux; EGCG did not alleviate the barrier disruption induced by IL-4 or EPEC. IFN-gamma-treated T84 and THP-1 (monocytic cell line) cells displayed STAT1 activation (tyrosine phosphorylation on Western blot analysis, DNA binding on EMSA) and upregulation of interferon response factor-1 mRNA, a STAT1-dependent gene. All three events were inhibited by EGCG pretreatment. Aurintricarboxylic acid also blocked IFN-gamma-induced STAT1 activation, but it did not prevent the increase in epithelial permeability. Additionally, pharmacological blockade of MAPK signaling did not affect IFN-gamma-induced epithelial barrier dysfunction. Thus, as a potential adjunct anti-inflammatory agent, EGCG can block STAT1-dependent events in gut epithelia and monocytes and prevent IFN-gamma-induced increased epithelial permeability. The latter event is both a STAT1- and MAPK-independent event.  相似文献   

2.
Previous evidence has indicated that the neuronal toxicity of amyloid beta (betaA) protein is mediated through oxygen free radicals and can be attenuated by antioxidants and free radical scavengers. Recent studies have shown that green tea polyphenols reduced free radical-induced lipid peroxidation. The purpose of this study was to investigate whether (-)-epigallocatechin gallate (EGCG) would prevent or reduce the death of cultured hippocampal neuronal cells exposed to betaA because EGCG has a potent antioxidant property as a green tea polyphenol. Following exposure of the hippocampal neuronal cells to betaA for 48 hours, a marked hippocampal neuronal injuries and increases in malondialdehyde (MDA) level and caspase activity were observed. Co-treatment of cells with EGCG to betaA exposure elevated the cell survival and decreased the levels of MDA and caspase activity. Proapoptotic (p53 and Bax), Bcl-XL and cyclooxygenase (COX) proteins have been implicated in betaA-induced neuronal death. However, in this study the protective effects of EGCG seem to be independent of the regulation of p53, Bax, Bcl-XL and COX proteins. Taken together, the results suggest that EGCG has protective effects against betaA-induced neuronal apoptosis through scavenging reactive oxygen species, which may be beneficial for the prevention of Alzheimer's disease.  相似文献   

3.
Epigallocatechin-3-gallate (EGCG), the major green tea polyphenol, can reach the brain following oral intake and could thus act as an anti-tumoral agent targeting several key steps of brain cancer cells invasive activity. Because integrin-mediated extracellular matrix recognition is crucial during the cell adhesion processes involved in carcinogenesis, we have investigated the effects of EGCG on different cellular integrins of the pediatric brain tumor-derived medulloblastoma cell line DAOY. Using flow cytometry, we report the levels of expression of several cell surface integrins in DAOY. These include high expression of alpha2, alpha3, and beta1 integrins, as well as alphav and beta3 integrins. Moreover, we provide evidence that EGCG can antagonize DAOY cell migration specifically on collagen by increasing cell adhesive ability through specific gene and protein upregulation of the beta1 integrin subunit. Our results suggest that this naturally occurring green tea polyphenol may thus be used as a nutraceutical therapeutic agent in targeting the invasive character of medulloblastomas.  相似文献   

4.
Green tea has been shown to have many biological effects, including effects on metabolism, angiogenesis, oxidation, and cell proliferation. Unfortunately, the most abundant green tea polyphenol (-)-epigallocatechin gallate or (-)-EGCG is very unstable in neutral or alkaline medium. This instability leads to a low bioavailability. In an attempt to enhance the stability of (-)-EGCG, we introduced peracetate protection groups on the reactive hydroxyls of (-)-EGCG (noted in text as 1). HPLC analysis shows that the protected (-)-EGCG analog is six times more stable than natural (-)-EGCG under slightly alkaline conditions. A series of bioassays show that 1 has no inhibitory activity against a purified 20S proteasome in vitro, but exhibits increased proteasome-inhibitory activity in intact leukemic cells over natural (-)-EGCG, indicating an intercellular conversion. Inhibition of cellular proteasome activity by 1 is associated with induction of cell death. Therefore, our results indicate that the protected analog 1 may function as a prodrug of the green tea polyphenol proteasome inhibitor (-)-EGCG.  相似文献   

5.
Studies from our laboratory have demonstrated that the major green tea polyphenol, (-)-epigallocatechin 3-gallate (EGCG), exerts potent neuroprotective actions in the mice model of Parkinson's disease. These studies were extended to neuronal cell culture employing the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA). Pretreatment with EGCG (0.1-10 microm) attenuated human neuroblastoma (NB) SH-SY5Y cell death, induced by a 24-h exposure to 6-OHDA (50 microm). Potential cell signaling candidates involved in this neuroprotective effect were further examined. EGCG restored the reduced protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) activities caused by 6-OHDA toxicity. However, the neuroprotective effect of EGCG on cell survival was abolished by pretreatment with PKC inhibitor GF 109203X (1 microm). Because EGCG increased phosphorylated PKC, we suggest that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-OHDA. In addition, gene expression analysis revealed that EGCG prevented both the 6-OHDA-induced expression of several mRNAs, such as Bax, Bad, and Mdm2, and the decrease in Bcl-2, Bcl-w, and Bcl-x(L). These results suggest that the neuroprotective mechanism of EGCG against oxidative stress-induced cell death includes stimulation of PKC and modulation of cell survival/cell cycle genes.  相似文献   

6.
The interaction of copper complexes of (−)-epicatechin gallate (ECG) and (−)-epigallocatechin gallate (EGCG) with calf thymus DNA (ct-DNA) was investigated by UV-visible (UV-Vis), fluorescence and circular dichroism along with melting studies. It was observed that both copper complexes quench the fluorescence intensity of ethidium bromide bound ct-DNA upon binding, resulting in a ground state complex formation by a static quenching process. The binding constants evaluated from fluorescence data were supported by the UV-Vis study. The values ranged from 0.84 to 1.07 × 105 M−1 and 1.14 to 1.04 × 105 M−1 for Cu(II)-ECG and Cu(II)-EGCG, respectively for the temperature range 21-42 °C with two binding sites. Thermodynamic parameters obtained are suggestive of the involvement of different modes of interaction during binding for each complex although both were found to be intercalating in nature. Circular dichroism studies and variations in the melting temperature reveal unwinding of the ct-DNA helix with conformational changes due to binding.  相似文献   

7.
Ghosh KS  Maiti TK  Mandal A  Dasgupta S 《FEBS letters》2006,580(19):4703-4708
Green tea polyphenols, which have the ability to inhibit angiogenesis, form complexes with Cu(II), a known potent stimulator of blood vessel proliferation. Copper complexes of (-)-epicatechin gallate and (-)-epigallocatechin gallate were found to inhibit the enzymatic activity of Ribonuclease A (RNase A) as revealed by an agarose gel based assay and urea denatured gel electrophoresis. The copper complexes were found to be non-competitive inhibitors of RNase A with inhibition constants in the micromolar range. Changes in the secondary structure of the protein are found to occur due to the interaction as revealed from Fourier transform infrared and circular dichroism studies.  相似文献   

8.
9.
Duchenne muscular dystrophy is a frequent muscular disorder caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that contributes to the stabilization of muscle fiber membrane during muscle activity. Affected individuals show progressive muscle wasting that generally causes death by age 30. In this study, the dystrophic mdx5Cv mouse model was used to investigate the effects of green tea extract, its major component (–)-epigallocatechin gallate, and pentoxifylline on dystrophic muscle quality and function. Three-week-old mdx5Cv mice were fed for either 1 or 5 wk a control chow or a chow containing the test substances. Histological examination showed a delay in necrosis of the extensor digitorum longus muscle in treated mice. Mechanical properties of triceps suræ muscles were recorded while the mice were under deep anesthesia. Phasic and tetanic tensions of treated mice were increased, reaching values close to those of normal mice. The phasic-to-tetanic tension ratio was corrected. Finally, muscles from treated mice exhibited 30–50% more residual force in a fatigue assay. These results demonstrate that diet supplementation of dystrophic mdx5Cv mice with green tea extract or (–)-epigallocatechin gallate protected muscle against the first massive wave of necrosis and stimulated muscle adaptation toward a stronger and more resistant phenotype. pharmacotherapy; muscular disorders; dystrophic mdx5cv mouse; muscle mechanical properties; muscle histology  相似文献   

10.
Aim: (?)‐Epicatechin gallate (ECg) modifies the morphology, cell wall architecture and β‐lactam antibiotic susceptibility of Staphylococcus aureus. As these effects result primarily from intercalation into the bacterial cytoplasmic membrane, the capacity of ECg to modulate the secretion of two key staphylococcal virulence factors, coagulase and α‐toxin, was examined. Methods and Results: Bioassays were used to determine coagulase and haemolysin activity in culture supernatants of a number of S. aureus isolates grown in the presence and absence of ECg; α‐toxin secretion was also evaluated by immunoblotting. Growth in ECg reduced the levels of activity of both proteins in culture supernatants; the effects could only be partly explained by ECg‐mediated inhibition of bioactivity and by induction of secreted proteases. Conclusion: ECg suppresses the secretion of coagulase and α‐toxin by clinical isolates of S. aureus. Significance and Impact of the Study: The observation that secretion of key components of staphylococcal virulence can be compromised by a naturally occurring polyphenol supports the notion that ECg and related compounds may have therapeutic utility for the control of infections that are currently difficult to treat due to the propensity of methicillin‐resistant S. aureus to accumulate antibiotic resistance genes.  相似文献   

11.
Accumulating evidence supports the hypothesis that brain iron misregulation and oxidative stress (OS), resulting in reactive oxygen species (ROS) generation from H2O2 and inflammatory processes, trigger a cascade of events leading to apoptotic/necrotic cell death in neurodegenerative disorders, such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). Thus, novel therapeutic approaches aimed at neutralization of OS-induced neurotoxicity, support the application of ROS scavengers, transition metals (e.g. iron and copper) chelators and non-vitamin natural antioxidant polyphenols, in monotherapy, or as part of antioxidant cocktail formulation for these diseases. Both experimental and epidemiological evidence demonstrate that flavonoid polyphenols, particularly from green tea and blueberries, improve age-related cognitive decline and are neuroprotective in models of PD, AD and cerebral ischemia/reperfusion injuries. However, recent studies indicate that the radical scavenger property of green tea polyphenols is unlikely to be the sole explanation for their neuroprotective capacity and in fact, a wide spectrum of cellular signaling events may well account for their biological actions. In this article, the currently established mechanisms involved in the beneficial health action and emerging studies concerning the putative novel molecular neuroprotective activity of green tea and its major polyphenol (-)-epigallocatechin-3-gallate (EGCG), will be reviewed and discussed.  相似文献   

12.
Green tea catechins, especially (–)-epigallocatechin gallate (EGCG), have been proposed as a chemopreventative for obesity, diabetes, cancer, and cardiovascular diseases. However, relatively little is known about the mechanism of the action of EGCG on fat cell function. This study was designed to investigate the pathways of EGCG's modulation of the mitogenesis of 3T3-L1 preadipocytes. Preadipocyte proliferation as indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU) was inhibited by EGCG in dose-, time-, and growth phase-dependent manners. Also, EGCG dose and time dependently decreased levels of phospho-ERK1/2, Cdk2, and cyclin D1 proteins, reduced Cdk2 activity, and increased levels of G0/G1 growth arrest, p21waf/cip, and p27kip1, but not p18ink, proteins and their associations to Cdk2. However, neither MEK1, ERK1/2, p38 MAPK, phospho-p38, JNK, nor phospho-JNK was changed. Increased phospho-ERK1/2 content and Cdk2 activity, respectively, via the transfection of MEK1 and Cdk2 cDNA into preadipocytes prevented EGCG from reducing cell numbers. These data demonstrate the ERK- and Cdk2-dependent antimitogenic effects of EGCG. Moreover, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in changing the mitogenic signals. The signal of EGCG in reducing growth of 3T3-L1 preadipocytes differed from that of 3T3 fibroblasts. Results of this study may relate to the mechanism by which EGCG modulates body weight. 3T3-L1 preadipocyte; mitogen-activated protein kinase; cyclin-dependent kinase  相似文献   

13.
The acid dissociation of (-)-epigallocatechin gallate (abbreviated as egcg) and its complexation with Al(3+) were studied by potentiometric titrations, and were compared with those of (-)-epicatechin (ec) and (-)-epigallocatechin (egc). In Al(3+)-ec and Al(3+)-egc reaction systems, [Al(LH(-2))](+), [Al(LH(-2))(OH)](0), and [Al(LH(-2))(2)](-) are formed, as reported for Al(3+)-catechin (c). Reactions between Al(3+) and egcg at pH <4.1 yield AlLH(-2) and AlLH(-3) species. The 1H NMR studies have shown that two hydroxyl groups of the gallate (D) ring are deprotonated and coordinated to an Al(3+) ion in [Al(egcgH(-2))](+). The AlLH(-3) species of egcg is supposed to be formulated as [Al(egcgH(-3))](0) in which one hydroxyl group of the pyrogallol (B) ring and two hydroxyl groups of the D ring are deprotonated; an Al(3+) ion is coordinated to two oxygen atoms of the D ring and one oxygen atom from the B ring of the neighboring chelate molecule, resulting in the formation of a polymeric structure. In the Al(3+) complex of egcg, the gallate group forms major coordinate bonds and results in solution properties that are different from those of ec, egc and c which have no gallate group.  相似文献   

14.
Resistin (Rstn) is known as an adipocyte-specific secretory hormone that can cause insulin resistance and decrease adipocyte differentiation. By contrast, green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been reported as body weight and diabetes chemopreventatives. Whether EGCG regulates production of Rstn is unknown. Using 3T3-L1 adipocytes, we found that EGCG at 20 and 100 microM suppressed Rstn mRNA levels by approximately 35 and 50%, respectively, after 3 h. The basal half-life of Rstn mRNA induced by actinomycin D was >12 h but shifted to 3 h in the presence of EGCG. This suggests that EGCG regulates the stability of Rstn mRNA. Treatment with cycloheximide did not prevent EGCG-suppressed Rstn mRNA levels, which suggests that the effect of EGCG does not require new protein synthesis. Intracellular Rstn protein significantly decreased in the presence of 100 microM EGCG 3 h after treatment, whereas the release of the Rstn protein did not significantly change. This suggests that EGCG may modulate the distribution of Rstn protein between the intracellular and extracellular compartments. EGCG did not affect the amounts of extracellular signal-related kinase-1/2 (ERK1/2), phospho-JNK, phospho-p38, and phospho-Akt proteins but reduced the amounts of phospho-ERK1/2 proteins. Overexpression with MEK1 blocked EGCG-inhibited Rstn mRNA expression. These data suggest that EGCG downregulates Rstn expression via a pathway that is dependent on the ERK pathway.  相似文献   

15.
16.
17.
The effect of green tea extract (GTE) in Ehrlich ascites tumor cells (EATC) was studied with respect to changes in the intracellular kinase system involving mitogen-activated protein kinases (MAPKs) and cellular thiol. We have previously shown a reduction in viability of EATC and tyrosine phosphorylation of 42 and 45 kDa proteins by GTE and its polyphenolic component, Epigallocatechin (EGC) (D.O. Kennedy, S. Nishimura, T. Hasuma, Y. Yoshihisa, S. Otani, I. Matsui-Yuasa, Involvement of protein tyrosine phosphorylation in the effect of green tea polyphenols on Ehrlich ascites tumor cells in vitro, Chem. Biol. Interact. 110 (1998) 159-172). Furthermore, GTE and EGC significantly decreased both cellular non-protein and protein sulfhydryl levels in EATC, but replenishing thiol stores with N-acetylcysteine (NAC) caused a recovery in cell viability, and therefore SH groups were identified as a novel target of green tea cytotoxicity (D.O. Kennedy, M. Matsumoto, A. Kojima, I. Matsui-Yuasa, Cellular thiol status and cell death in the effect of green tea polyphenols in Ehrlich ascites tumor cells, Chem. Biol. Interact. 122 (1999) 59-71). In this study, we have observed the stimulation of three forms of MAPK, namely ERK1/2, JNK/SAPK and p38, by EGC, which were dose and time-dependent. These MAPK stimulations were found to be cellular thiol status-dependent events as NAC reversed these stimulations. Furthermore, inhibition of the p38 MAPK pathway using the p38 inhibitor SB203580 caused a marked dose-dependent reduction in the decrease in cell viability caused by EGC treatment. Inhibiting the Erk1/2 MAPK pathway using the MEK inhibitor PD098059 caused a slight change in the decrease in cell viability by EGC. These may suggest that the cytotoxicity associated with EGC was more associated with the other MAPKs than with ERK1/2. This may be the first study of its kind providing a novel evidence of a role for different forms of MAPKs in the antitumor effect of green tea polyphenols, especially EGC, in Ehrlich ascites tumor cells.  相似文献   

18.
Green tea has been reported as potential dietary protection against numerous cancers and has been shown to have activity in bladder tumor inhibition in different animal models. The goal of this study was to examine the effects of (-)-epigallocatechin gallate (EGCG-the major phytochemical in green tea) on growth inhibition and behavior of human bladder carcinoma cells and to identify the altered signaling pathway(s) underlying the response to EGCG exposure. EGCG inhibited the in vitro growth of invasive bladder carcinoma cells with an IC(50) range of 70-87 microM. At a concentration of 20 microM, EGCG decreased the migratory potential of bladder carcinoma cells with concomitant activation of p42/44 MAPK and STAT3 and inactivation of Akt. Using biochemical inhibitors of MAPK/ERK, and siRNA to knockdown STAT3 and Akt, inhibition of migration was recorded associated with Akt but not MAPK/ERK or STAT3 signaling in bladder cells. In addition, EGCG downregulated N-cadherin in a dose-dependent manner where reduction in N-cadherin expression paralleled declining migratory potential. Continuous feeding of EGCG to mice prior to and during the establishment of bladder carcinoma xenografts in vivo revealed >50% reduction in mean final tumor volume (P 相似文献   

19.
Epigallocatechin-3-gallate (EGCG) is the major polyphenol present in white tea and green tea. Recently, it was reported that the addition of EGCG and other tea polyphenols to cell culture media, minus cells, generated significant levels of H(2)O(2), with the corollary that this might represent an "artifact" in cell culture studies which seek to examine the chemopreventive mechanisms of tea. We show here that in cell growth media with and without serum, and in growth media containing human embryonic kidney 293 (HEK293) cells plus serum, physiologically relevant concentrations of EGCG (< or =25 microM) generated H(2)O(2) with a peak concentration of the order of 10-12 microM. However, addition of 20 microM H(2)O(2) directly to HEK293 cells transiently transfected with wild-type or mutant beta-catenin constructs and TCF-4 had no significant effect on beta-catenin/TCF-4 reporter activity or beta-catenin expression levels. In contrast, 2-25 microM EGCG inhibited beta-catenin/TCF-4 reporter activity in a concentration-dependent fashion and there was a concomitant reduction in beta-catenin protein levels in the cell lysates without changes in TCF-4 expression. The inhibition of reporter activity was recapitulated by white tea and green tea, each tested at a 25 microM EGCG equivalent concentration in the assay, and this was unaffected by the addition of exogenous catalase. The results indicate that physiologically relevant concentrations of tea and EGCG inhibit beta-catenin/TCF-4 reporter activity in HEK293 cells due to reduced expression of beta-catenin and that this is unlikely to be an artifact of H(2)O(2) generation under the assay conditions used here. These data are consistent with the findings from in vivo studies, showing the suppression of intestinal polyps by tea, via an apparent down-regulation of beta-catenin and Wnt target genes.  相似文献   

20.
Lung HL  Ip WK  Wong CK  Mak NK  Chen ZY  Leung KN 《Life sciences》2002,72(3):257-268
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号