首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of low intensity, low frequency magnetic fields (MFs) on catalytic activity of the calcium dependent protease calpain was determined following the enzyme activation both in "in vitro" and "in vivo" conditions. We have observed that a 0.3 mT MF induces a significant increase in the requirement of the protease for this metal ion. This change is detectable at low [Ca(2+)] and disappears when the level of Ca(2+) is raised to saturating amounts. The observed effects are not due to transient MF(-) induced conformational changes occurring in calpain, but to direct effects of the MF on Ca(2+) ions, which become less available for the binding sites present in calpain. Altogether, these results indicate that exposure to low intensity, low frequency MFs alters the intracellular Ca(2+) "availability," thereby modifying the related cell response.  相似文献   

2.
To explore possible biochemical mechanisms whereby electromagnetic fields of around 0.1 mT might affect immune cells or developing cancer cells, we studied intracellular calcium signaling in the model system Jurkat E6-1 human T-leukemia cells during and following exposure to a 60 Hz magnetic field. Cells were labeled with the intracellular calcium-sensitive fluorescent dye Fluo-3, stimulated with a monoclonal antibody against the cell surface structure CD3 (associated with ligand-stimulated T-cell activation), and analyzed on a FACScan flow-cytometer for increases in intensity of emissions in the range of 515–545 nm. Cells were exposed during or before calcium signal-stimulation to 0.15 mTrms 60 Hz magnetic field. The total DC magnetic field of 78.2 μT was aligned 17.5° off the vertical axis. Experiments used both cells cultured at optimal conditions at 37 °C and cells grown under suboptimal conditions of 24 °C, lowered external calcium, or lowered anti-CD3 concentration. These experiments demonstrate that intracellular signaling in Jurkat E6-1 was not affected by a 60 Hz magnetic field when culture and calcium signal-stimulation were optimal or suboptimal. These results do not exclude field-induced calcium-related effects further down the calcium signaling pathway, such as on calmodulin or other calcium-sensitive enzymes. Bioelectromagnetics 18:439–445, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    3.
    The total current of Ca2+ ions through patch-clamped cell membranes was measured while exposing clonal insulin-producing β-cells (RINm5F) to a combination of DC and AC magnetic fields at so-called cyclotron resonance conditions. Previous experimental evidence supports the theory that a resonant interaction between magnetic fields and organisms can exist. This experiment was designed to test one possible site of interaction: channels in the cell membrane. The transport of Ca2+ ions through the protein channels of the plasma membrane did not show any resonant behavior in the frequency range studied. © 1995 Wiley-Liss, Inc.  相似文献   

    4.
    Interaction between weak low frequency magnetic fields and cell membranes   总被引:12,自引:0,他引:12  
    The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard.  相似文献   

    5.
    We have investigated the effects of sinusoidal electromagnetic fields (EMF) on ion transport (Ca2+, Na+, K+, and H+) in several cell types (red blood cells, thymocytes, Ehrlich ascites tumor cells, and HL60 and U937 human leukemia cells). The effects on the uptake of radioactive tracers as well as on the cytosolic Ca2+ concentration ([Ca2+]i), the intracellular pH (pHi), and the transmembrane potentsial (TMP) were studied. Exposure to EMF at 50 Hz and 100–2000 μT (rms) had no significant effects on any of these parameters. Exposure to EMF of 20–1200 μT (rms) at the estimated cyclotron magnetic resonance frequencies for the respective ions had no significant effects except for a 12–32% increase of the uptake of 42K within a window at 14.5–15.5 Hz and 100–200 μT (rms), which was found in U937 and Ehrlich cells but not in the other cell types. © 1994 Wiley-Liss, Inc.  相似文献   

    6.
    The question whether extremely low frequency magnetic fields (ELFMFs) may contribute to mutagenesis or carcinogenesis is of current interest. In order to evaluate the possible genotoxic effects of ELFMFs, human blood cells from four donors were exposed in vitro for 48 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay (SCGE), sister chromatid exchanges (SCE), chromosome aberrations (CAs), and micronucleus (MN) test were used to assess the DNA damage. ELF pretreated cells were also irradiated with 1 Gy of X-ray to investigate the possible combined effect of ELFMFs and ionizing radiation. Furthermore, nuclear division index (NDI) and proliferation index (PRI) were evaluated. Results do not evidence any DNA damage induced by ELFMF exposure or any effect on cell proliferation. Data obtained from the combined exposure to ELFMFs and ionizing radiation do not suggest any synergistic or antagonistic effect.  相似文献   

    7.
    An elementary model consisting of one charged particle in a viscous medium exposed to weak ac-dc low-frequency magnetic fields is analyzed to identify and explain the fundamental characteristics of the physical mechanisms that result in a resonance response, which is similar to the familiar cyclotron resonance. The model predicts both frequency and amplitude windows, which are explained in terms of synchronization of the particle with electric fields. Although extrapolation of model results to biological systems is limited by the elementary nature of the model, the model results indicate that observed resonant responses by others of biological systems to ac-dc magnetic fields are probably not due to resonant response of ions in solution, since the model predicts that no resonant response is possible unless the viscous damping is very low, many orders of magnitude lower than the viscous damping of ions in solution.  相似文献   

    8.
    The possibility that weak, ac and dc magnetic fields in combination may affect binding equilibria of calcium-ions (Ca2+) was investigated with two metallochromic dyes as calcium-binding molecules: murexide and arsenazo III. Calcium-dye equilibria were followed by measuring solution absorbances with a fiber-optic spectrophotometer. A Ca(2+)-arsenazo solution was also used indirectly to monitor the binding of Ca2+ to calmodulin. Parallel, ac and dc magnetic fields were applied to each preparation. The ac magnetic field was held constant during each of a series of experiments at a frequency in the range between 50 and 120 Hz (sine wave) or at 50 pps (square wave) and at an rms flux density in the range between 65 and 156 microT. The dc magnetic field was then varied from 0 to 299 microT at 1.3 microT increments. The magnetic fields did not measurably affect equilibria in the binding of metallochromic dyes or calmodulin to Ca2+.  相似文献   

    9.
    Zeng Q  Ke X  Gao X  Fu Y  Lu D  Chiang H  Xu Z 《Bioelectromagnetics》2006,27(4):274-279
    Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.  相似文献   

    10.
    V. V. Lednev has proposed a mechanism that he suggests would allow very weak magnetic fields, at the cyclotron resonance frequency for Ca2+ ions in the earth's field, to induce biological effects. I show that for four independent reasons no such mechanism can operate.  相似文献   

    11.
    To address the effect of extremely low frequency electromagnetic fields on programmed cell death we assessed both the spontaneous and dexamethasone (Dex)-induced apoptosis of thymocytes and spleen cells from mice submitted to a long-term continuous exposure of a 0.4–1.0 μT 60 Hz magnetic field or an 8–20 μT direct current (DC) magnetic field. Dex-induced apoptosis but not spontaneous apoptosis was substantially increased in thymocytes from 0.4 to 1.0 μT 60 Hz field-exposed animals. Spontaneous apoptosis and Dex-induced apoptosis of spleen cells were not affected by the 0.4–1.0 μT 60 Hz field exposure. In addition, spontaneous apoptosis and Dex-induced apoptosis of thymocytes and spleen cells from mice exposed to an 8–20 μT DC field were similar to the controls. These findings represent the first demonstration that thymocytes from mice exposed to a long-term 0.4–1.0 μT 60 Hz field may show abnormal response to Dex apoptotic stimuli. Bioelectromagnetics 19:131–135, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    12.
    This paper has two aims. First, it reports the findings of a study on the effects of low-frequency magnetic fields on reproduction. Second, it serves as an example of an attempt to replicate the results of an experimental study in an independent laboratory and discusses some of the problems of replication studies. To try to replicate the findings of a study reporting increased resorptions (fetal loss) in mice exposed to 20 kHz magnetic fields with sawtooth waveform and to study the possible effects of 50 Hz sinusoidal fields, pregnant mice were exposed to magnetic fields from day 0 to 18 of pregnancy, 24 h per day. The flux densities of the vertical magnetic fields were 15 μT (peak-to-peak) at 20 kHz and 13 or 130 μT (root mean square) at 50 Hz. Two strains of animals were used: CBA/S mice imported from the laboratory reporting the original observations, and a closely related strain CBA/Ca. The CBA/S mice were cleaned of pathogenic microbes and parasites before they were imported into our laboratory. The magnetic field exposures did not affect resorption rate in CBA/Ca mice. In CBA/S, the frequency of resorptions was higher in the exposed mice than in the control group. However, the increase was not significantly different from either the no-effect hypothesis or the results of the original study we were attempting to replicate. Differences between the two studies and difficulties in interpreting the results are discussed. It is concluded that the results tend more to support than argue against increased resorptions in CBA/S mice exposed to the 20 kHz magnetic field. The results demonstrate that animal strain is an important variable in bioelectromagnetics research: even closely related strains may show different responses to magnetic field exposure. Bioelectromagnetics 18:410–417, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    13.
    Several authors have concluded that thermal electromagnetic noise will be of sufficient magnitude to overwhelm electric and/or magnetic fields induced by environmentally generated, power frequency electric and magnetic fields in the membranes of living cells located in the bodies of humans. Yet, there are research reports that indicate that living cells may respond to power frequency electric and/or magnetic field levels well below the limits set by these thermal noise arguments. The purpose of this study is to suggest that published thermal arguments may not make a full accounting of all membrane force fields of thermal origin, and that when such an accounting is made, the net thermal noise fields may be smaller in the power frequency range than previously thought. If this analysis is correct, there may be no thermal noise barrier that precludes the possibility of cellular membranes of human cells responding to environmental levels of power frequency electric or magnetic fields.  相似文献   

    14.
    The frequency dependence of electromagnetic field-induced calcium-ion efflux from chicken brain tissues has been examined at 15-Hz intervals over the range 1-510 Hz. The electric field component was 15 Vrms/m and the magnetic component varied between 59 and 69 nTrms. No patterns of response as a function of frequency could be readily discerned when the differences in mean efflux values between exposed and sham samples were compared. However, the calculated P-value, a function that combines at each frequency the difference between the means of the exposed and sham groups with the variance of each group, does provide a basis for hypothesizing the existence of three frequency-dependent patterns in the data. One pattern includes all the highly significant (P less than .01) responses which occur between 15 and 315 Hz, at 30-Hz intervals; two independent trials at 165 Hz, giving nonsignificant responses (P greater than .5), break this pattern into two groups of five frequencies each, which is contrary to the expected result for a simple Lorentz-force interaction. However, another pattern of significant results at 60, 90, and 180 Hz, but not at 300 Hz, is consistent with a Lorentz-force model. A third pattern, composed of only one significant response at 405 Hz, is very close to the resonance predicted on a linear extrapolation from high-frequency data for 13carbon atoms. This hypothetical ordering of the frequency-response profile provides the basis for future experimental designs to test each possible interaction model and for their connection to the calcium-ion efflux endpoint.  相似文献   

    15.
    The effect of sinusoidal electric fields on the cytosolic free [Ca2+]i concentration in differentiated HL-60 cells was measured. The calcium concentration was measured in a fluorescence spectrometer using the fluorescence sample fluo-3. In the fluorescence spectrometer two samples can be measured simultaneously, one as the sham-exposed control and the other as the field-exposed sample. The effects of an external field, applied using two capacitor plates outside the cuvettes, and a field applied directly to the medium, using two platinum electrodes inside the cuvettes, were measured at selected frequencies between 0 and 100 Hz and field strengths from 1 to 2000 Vpp/m (external field) and from 0.1 to 1000 Vpp/m (in medium). No significant effects of the fields on the cytosolic free [Ca2+]i concentration in HL-60 cells have been observed at the measured frequencies and field strengths. Bioelectromagnetics 19:32–40, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    16.
    Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields.  相似文献   

    17.
    Two independent laboratories have demonstrated that electromagnetic radiation at specific frequencies can cause a change in the efflux of calcium ions from brain tissue in vitro. In a local geomagnetic field (LGF) at a density of 38 microTesla (microT), 15- and 45-Hz electromagnetic signals (40 Vp-p/m in air) have been shown to induce a change in the efflux of calcium ions from the exposed tissues, whereas 1- and 30-Hz signals do not. We now show that the effective 15-Hz signal can be rendered ineffective when the LGF is reduced to 19 microT with Helmholtz coils. In addition, the ineffective 30-Hz signal becomes effective when the LGF is changed to +/- 25.3 microT or to +/- 76 microT. These results demonstrate that the net intensity of the LGF is an important variable. The results appear to describe a resonance-like relationship in which the frequency of the electromagnetic field that can induce a change in efflux is proportional to a product of LGF density and an index, 2n + 1, where n = 0,1. These phenomenological findings may provide a basis for evaluating the apparent lack of reproducibility of biological effects caused by low-intensity extremely-low-frequency (ELF) electromagnetic signals. In future investigations of this phenomenon, the LGF vector should be explicitly described. If the underlying mechanism involves a general property of tissue, then research conducted in the ambient electromagnetic environment (50/60 Hz) may be subjected to unnoticed and uncontrolled influences, depending on the density of the LGF.  相似文献   

    18.
    Low frequency magnetic fields can influence biochemical reactions and consequently physiological rhythms and oscillations. To test this for a model reaction we used the chemical Belousov-Zhabotinsky (BZ) reaction, which is one of the simplest chemical oscillators. The oscillation frequency of the reaction was tracked optically by the absorption of blue light. Field treatment was carried out at room temperature in the middle of two Helmholtz coils. After starting the reaction, for 5 min the oscillations were monitored as control measurement, then during the next 10 min monitoring was with a magnetic field switched on, followed by a period of 5 min with the field switched off. A variety of exposure conditions have been tested: the frequency was varied between 5 and 1000 Hz, the field strength was varied up to 2.7 mT, different pulse shapes were used, the influence of the exposure temperature was tested, and the influence of the optimum exposure conditions (static magnetic field and the frequency of the dynamic field) as predicted by the ion parametric resonance (IPR) model has been measured. In conclusion, in no case any statistical significant influence of the magnetic treatment on the oscillation frequency of the BZ reaction could be detected (P > .05, t-test).  相似文献   

    19.
    Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    20.
    Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. We report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 μT) and AC (60.0 Hz at 10.0 μT peak) magnetic fields applied in parallel was found to be significantly delayed (P ? 0.001) by 48 ± 1 h relative to two different types of control populations (MRT ? 140 ± 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca2+ cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation. © 1995 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号