首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The waterborne route of Vero cytotoxin-producing E. coli (VTEC) O157 infection was first suggested in two unconnected human cases in 1985. Since then, waterborne VTEC O157 has been identified in sporadic cases and in outbreaks of illness. Recreational waters, private and municipal supplies have been implicated from microbiological, environmental and epidemiological studies of cases. In addition, a research cohort study of farm workers identified exposure to private water supplies as a risk factor for having antibodies to E. coli O157. Sources of contamination are thought to be animal and human faeces or sewage. The presence of low numbers of target organisms in water makes microbiological confirmation difficult, therefore epidemiological evidence has been essential in outbreak investigations. Despite the potential for contamination of water with VTEC O157, waterborne infection is relatively rare largely due to the susceptibility of the organism to water treatment processes. This paper presents the evidence for waterborne VTEC O157 infection, considering current microbiological, environmental and particularly epidemiological information.  相似文献   

2.
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4°C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4°C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

3.
Whereas several important virulence factors in Escherichia coli O157 have been identified, studies suggest they are not always essential and are probably insufficient to account for the severe clinical manifestation of E. coli O157 infection. Identification of putative virulence determinants is crucial to the understanding of bacterial pathogenesis and genomic comparison analysis may aid the characterisation of unidentified virulence attributes. In this study, representational difference analysis (RDA) was used for genomic comparison of E. coli O157 with the proposed ancestral strain, E. coli O55. Unique E. coli O157 gene sequences were isolated and one, termed RDA-1, taken forward for further analysis. Southern blotting with labelled RDA-1 as a probe showed it to be present in 77% of E. coli O157 isolates and absent in all non-E. coli O157 screened. Sequence flanking RDA-1 was obtained from a genomic clone identified by hybridisation, and contained an open reading frame predicted to encode a novel iron-regulated outer membrane protein.  相似文献   

4.
AIMS: To examine the effect of temperature on the antimicrobial efficacy of lactate and propionate against O157 and non-O157 Escherichia coli isolates. METHODS AND RESULTS: Lactate and, to a lesser extent, propionate effectively reduced viability at 37 degrees C. Ethanol enhanced this effect. Reducing the temperature to 20 or 5 degrees C caused an increase in survival in the presence of these organic acids with or without ethanol. At 20 degrees C the deltapH, membrane potential and intracellular lactate anion concentration were less than at 37 degrees C. CONCLUSIONS: The efficacy of lactate and propionate against E. coli O157 and non-O157 isolates is reduced at lower temperatures, perhaps due to the reduction in the deltapH, membrane potential and intracellular lactate anion concentration. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the usefulness of organic acids as decontaminants for E. coli O157 is temperature dependent.  相似文献   

5.
Biocontrol of Escherichia coli O157 with O157-specific bacteriophages.   总被引:2,自引:0,他引:2  
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4 degrees C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4 degrees C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

6.
Verocytotoxin-producing Escherichia coli O157 is a serious pathogen in man that is carried by ruminants and has been isolated from some other animal species. Except in the very young of certain species and in greyhounds, the organism is not associated with disease in animals. Humans may be infected by ingestion of the organism through direct animal contact, from contaminated food or water or from the environment. Great efforts have been made to improve hygienic food production and handling, to protect water supplies and to give adequate advice to people handling animals. It is also essential to try to reduce the numbers of organisms shed by animals and, to do this, a clear understanding of the ecology of the organism is required. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
In 1977, Konowalchuk and colleagues (Konowalchuk, J., Speirs, J.I. & Stavric, S. 1977 Infection and Immunity 18, 775–779) were the first to describe Verocytotoxin-producing strains of Escherichia coli or VTEC. The surveillance of infection caused by VTEC demonstrated strains of E. coli belonging to serogroup O157 as the main cause of human infection capable of causing haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). Infection with O157 VTEC results in a range of disease manifestations including abdominal cramps, vomiting and fever. This frequently leads to cases with bloody diarrhoea and HC, and approximately 10% of patients develop HUS. The symptoms of disease caused by VTEC O157 have been well documented and the pathogenic mechanisms expressed by VTEC have been the focus of considerable attention. However, the role of putative pathogenic mechanisms in the pathogenesis of disease is not fully understood. The aim of this review is to consider the clinical aspects of infection with strains of VT-producing E. coli O157 in terms of the putative pathogenic mechanisms expressed by these bacteria. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
The presence of Escherichia coli O157 in the faeces of farm animals appears to provide a primary route for human infection, either through physical contact or by contamination of the food chain. Controlling the survival and proliferation of this pathogen in the ruminant gut could offer a measure of protection in the short term, and ultimately complement alternative biotechnological based solutions. Normally, E. coli is greatly outnumbered in the ruminant gut by anaerobic bacteria, producers of weak acids inhibitory to the growth of this species. Withdrawal of feed prior to animal slaughter reduces the concentration of these acids in the gut and may be accompanied by the proliferation of E. coli. There are conflicting reports concerning the effects of changes in the ruminant diet upon faecal shedding of E. coli O157. It is contended that it is important to identify animal husbandry methods or feed additives that may be accompanied by an increased risk of proliferation of this pathogen. Greater understanding of the mechanisms involved in bacterial survival in the presence of weak acids, in the interactions between E. coli and other gut bacteria, and of the effects of some antibacterial plant secondary plant compounds on E. coli, could lead to the development of novel control methods.  相似文献   

9.
The presence of Escherichia coli O157 in the faeces of farm animals appears to provide a primary route for human infection, either through physical contact or by contamination of the food chain. Controlling the survival and proliferation of this pathogen in the ruminant gut could offer a measure of protection in the short term, and ultimately complement alternative biotechnological based solutions. Normally, E. coli is greatly outnumbered in the ruminant gut by anaerobic bacteria, producers of weak acids inhibitory to the growth of this species. Withdrawal of feed prior to animal slaughter reduces the concentration of these acids in the gut and may be accompanied by the proliferation of E. coli. There are conflicting reports concerning the effects of changes in the ruminant diet upon faecal shedding of E. coli O157. It is contended that it is important to identify animal husbandry methods or feed additives that may be accompanied by an increased risk of proliferation of this pathogen. Greater understanding of the mechanisms involved in bacterial survival in the presence of weak acids, in the interactions between E. coli and other gut bacteria, and of the effects of some antibacterial plant secondary plant compounds on E. coli, could lead to the development of novel control methods.  相似文献   

10.
8-hydroxyquinoline-beta-D-glucuronide (HQG) was used to improve the presumptive identification of Shiga toxin-producing Escherichia coli O157 (STEC O157) on sorbitol MacConkey agars (SMAC). Advantages of HQG are (i) that it is less expensive than 5-bromo-4-chloro-3-indoxyl-glucuronide; (ii) that it is visible in normal daylight and (iii) that it does not diffuse into the agar like 4-methylumbelliferryl-beta-D-glucuronide (MUG). Sixteen STEC O157 isolates, 91 bovine mastitis-associated E. coli isolates and 222 faecal E. coli isolates from apparently healthy cattle were used in this study. 4-methylumbelliferryl-beta-D-glucuronide detected beta-glucuronidase activity in more isolates than HQG (P < 0.05). On SMAC with HQG, cefixime and tellurite all STEC O157 isolates grew as cream-coloured colonies (100% sensitivity), whereas all non-STEC O157 E. coli except one grew either not at all or as purple or black colonies (99.7% specificity). No difference was found between faecal and mastitis isolates for the proportion of isolates that hydrolysed HQG or MUG or fermented sorbitol. However, significantly more mastitis isolates were able to grow in the presence of the cefixime-tellurite supplement. 8-Hydroxyquinoline-beta-D-glucuronide is a useful substrate for the identification of STEC O157 on SMAC.  相似文献   

11.
The lamina propria of the large intestine is rich in macrophages, and they might be one of the first lines of the host defense in enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection. Although macrophages were infected with them, they can survive the EHEC O157 infection. We examined the structural rearrangements of the actin cytoskeleton during the microbial infection process. Macrophage actin filaments were rearranged in the following sequence; 1) disappearance of the actin filament bundles in the cytoplasm, 2) accumulation of actin filaments under the cell surface, and 3) construction of actin networks underlying the endosome membrane. Before infection, actin filaments were distributed under the cell surface and in bundles located in the macrophage cytoplasm. Within 2 min, infection caused a rapid and marked loss of the actin filament bundles that had run parallel to the long axis of the cell. Concomitant with the loss, actin filaments became more markedly distributed under the cell surface. In the formation of the endosome, new networks of actin filaments were constructed below the phagosome membrane. The networks contained a large amount of actin as well as a fodrin-like immunoreactivity. The thickness of the networks reached about 400 nm under the phagosome membrane. The actin networks disappeared again after the bacterial digestion. The results of this study showed that actin filaments undergo three major rearrangements of the actin filaments during the infection in macrophages, and suggested that the third rearrangement is mediated by actin-binding proteins, such as a fodrin-like molecules. These morphological changes in macrophages were not clear after infection with other strains of Escherichia coli.  相似文献   

12.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios > or = 10(2) terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 10(10) PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be > or = 10(2). In addition, phages were maintained at 10(6) PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

13.
C. VERNOZY-ROZAND, C. MAZUY, S. RAY-GUENIOT, S. BOUTRAND-LOEï, A. MEYRAND AND y. richard. 1997. Two commercially available screening methods, an automated enzyme-linked fluorescent immunoassay (VIDASTM E. coli O157) and an immunomagnetic separation followed by culture onto cefixime tellurite sorbitol MacConkey agar (CT-SMAC), were compared for detection of Escherichia coli O157 in naturally and artificially contaminated food samples. A total of 250 naturally contaminated food samples, including raw milk cheeses, poultry, raw sausages and ground beef retail samples, were examined. Four poultry, one raw sausage and one ground beef sample were found to be positive for E. coli O157 by both methods. Of the six positive samples, five were shown to contain sorbitol-positive, O157-positive, H7-negative, motile and non-verotoxin-producing E. coli .  相似文献   

14.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

15.
The antimicrobial effect of L-lactate was much greater than that of D-lactate over a range of concentrations for Escherichia coli O157 and non-O157 strains. Despite this, the intracellular pHs and membrane potentials of L-lactate- and D-lactate-treated cells were similar, suggesting that these factors are not involved in the antimicrobial action of L-lactate.  相似文献   

16.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

17.
AIMS: Escherichia coli O157:H7 was monitored daily during sprouting of alfalfa seeds inoculated at high (3.92 log10 cfu g(-1)) and low (1.86 log10 cfu g(-1)) levels to assess the extent of pathogen growth during production. METHODS AND RESULTS: Sprouts and rinse water were tested by direct and membrane filter plating on modified sorbitol MacConkey agar and BCM O157:H7(+) agar; the antibody-direct epifluorescent filter technique; and rapid immunoassays. The pathogen reached maximum populations after one and two days of sprouting seeds inoculated at high and low levels, respectively; in either case, populations of 5-6 log10 cfu g(-1) were reached. Detection limits of two rapid immunoassays, Reveal and VIP, without enrichment were determined to be 5-7 log10 cfu ml(-1). CONCLUSION: These results show the ability of E. coli O157:H7 to grow to high levels during sprouting; however, because these levels may be below detection limits, it is necessary to include enrichment when monitoring sprout production for E. coli O157:H7 by the rapid test kits. SIGNIFICANCE AND IMPACT OF THE STUDY: The data indicate that sprouts may harbor high levels of pathogens. The appropriate use of rapid test methods for pathogen monitoring during sprouting is indicated.  相似文献   

18.
A novel, label-free amperometric immunosensor has been developed for the rapid detection of heat-killed Escherichia coli O157:H7 (E. coli O157:H7). This immunosensor was prepared as follows. First, the long-chain, amine-terminated alkanethiol 11-amino-1-undecanethiol hydrochloride (AUT) was self-assembled onto a gold electrode surface to form an ordered, oriented, compact, and stable monolayer possessing -NH(2) functional groups that could immobilize massive gold nanoparticles (GNPs). Next, chitosan-multiwalled carbon nanotubes-SiO(2)/thionine (CHIT-MWNTs-SiO(2)@THI) nanocomposites and GNPs multilayer films were prepared via layer-by-layer (LBL) assembly. The surface area enhancement from the LBL assembly of the multilayer films improves the stability of the immobilized CHIT-MWNTs-SiO(2)@THI. More important, the sensitivity and stability of the immunosensor can be enhanced proportionally to the quantity of the THI mediator immobilized on the electrode surface. Finally, the E. coli O157:H7 antibody (anti-E. coli O157:H7) was covalently bound to the GNP monolayer and its bioactivity was measured by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was employed to characterize the morphology of the MWNTs, CHIT-MWNTs, and CHIT-MWNTs-SiO(2)@THI. Under optimal conditions, the calibration curve for heat-killed E. coli O157:H7 has a working range of 4.12×10(2)-4.12×10(5) colony-forming units (CFU)/ml, and the total assay time was less than 45 min.  相似文献   

19.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

20.
Pressure-damaged Escherichia coli O157 cells were more acid sensitive than native cells and were impaired in pH homeostasis. However differences in acid sensitivity were not related to differences in cytoplasmic pH (pHi). Cellular β-galactosidase was more acid labile in damaged cells. Sensitization to acid may thus involve loss of protective or repair functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号