首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Satriano J 《Amino acids》2004,26(4):321-329
Summary. An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This anti-bacterial phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a repair phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.  相似文献   

2.
Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study, we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to 2h immobilization stress daily for 7 days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with beta-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50mg/kg/day), i.p.). Likewise, endogenous agmatine levels measured by high-performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92 to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that the administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism.  相似文献   

3.
Summary. Arginine is a precursor of proteins and employed in urea synthesis. It is also the precursor of many other compounds, such as creatine, nitric oxide, polyamines, agmatine, proline. In this review, its transport and that of other basic amino acids are examined, along with its transformation into nitric oxide, agmatine and proline, and the mutual regulation of the individual pathways.  相似文献   

4.
Decarboxylated arginine, agmatine, is a neurotransmitter candidate for imidazoline receptors. A method is described to measure agmatine in rat brain and human plasma by isocratic high-performance liquid chromatography (HPLC) with flourescence detection and o-phthalaldehyde derivatization. Quantitation is based on the method of additions of internal agmatine spikes. This assay has sensitivity in the low picomole range and a detection limitof 100 fmol. The correlation coefficient for the agmatine standard curve was 0.999±0.001 S.D., and intra- and inter-assay C.V.s were less than 8%. The accuracy of our isocratic method compared favorably with a gradient HPLC protocol, originally developed for bacterial agmatine, which we modified for use with tissues. Agmatine concentrations in rat brain were proportioned similarly to the regional distribution of imidazoline-1 receptors. These methods can be used as reliable research tools in various biological samples.  相似文献   

5.
We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity.  相似文献   

6.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

7.
It has been shown that the recovery of monomeric antibodies from protein A affinity chromatography is enhanced significantly by using arginine as an eluent. To extend the applications of arginine to antibody purification and obtain an insight into the mechanism of arginine elution, we compared arginine with citrate, guanidine hydrochloride (GdnHCl), arginine derivatives, and other amino acids in protein A chromatography. We also applied arginine to elution of polyclonal antibodies (pAbs) in antigen affinity chromatography. As described previously, arginine was effective in eluting monoclonal antibodies IgG1 and IgG4. Two arginine derivatives, acetyl-arginine and agmatine, resulted in efficient elution at pH 4.0 or higher, and this was comparable to arginine. On the other hand, other amino acids, such as glycine, proline, lysine, and histidine, are much less effective than arginine under identical pH conditions. Whereas elution increased with arginine concentration, elution with citrate was insignificant in excess of 1 M at pH 4.3. Arginine was also effective in fractionation of pAbs using antigen-conjugated affinity columns. Although GdnHCl was also effective under similar conditions, the eluted material showed more aggregation than did the protein eluted by arginine.  相似文献   

8.
Abstract: Agmatinase, the enzyme that hydrolyzes agmatine to form putrescine and urea in lower organisms, was found in rat brain. Agmatinase activity was maximal at pH 8–8.5 and had an apparent K m of 5.3 ± 0.99 m M and a V max of 530 ± 116 nmol/mg of protein/h. After subcellular fractionation, most of the enzyme activity was localized in the mitochondrial matrix (333 ± 5 nmol/mg of protein/h), where it was enriched compared with the whole-brain homogenate (7.6–11.8 nmol/mg of protein/h). Within the CNS, the highest activity was found in hypothalamus, a region rich in imidazoline receptors, and the lowest in striatum and cortex. It is interesting that other agmatine-related molecules such as arginine decarboxylase, which synthesizes agmatine, and I2 imidazoline receptors, for which agmatine is an endogenous ligand, are also located in mitochondria. The results show the existence of rat brain agmatinase, mainly located in mitochondria, indicating possible degradation of agmatine by hydrolysis at its sites of action.  相似文献   

9.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

10.
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.  相似文献   

11.
Streptococcus faecalis ATCC 11700 uses oxalurate as a sole energy source for growth. An oxamate carbamoyltransferase and a carbamate kinase, both induced by oxalurate, are involved in this process.The oxalurate-induced kinase is specific for the pathway. Its properties are different from those of the previously characterized agmatine and arginine-induced kinases.Glucose, but not arginine, nor agmatine, two other energy sources, represses the oxalurate pathway. In contrast, oxalurate was found to be at least as effective as glucose in repressing the arginine deiminase pathway in arginine grown cells or the agmatine deiminase pathway during growth on agmatine.  相似文献   

12.
In an attempt to simultaneously detect molecules generated through the metabolism of l-arginine, a high-performance liquid chromatography method with on-line time-controlled preinjection reaction of ortho-phthaldialdehyde derivatization was developed. Plasma concentrations of citrulline, N(G)-hydroxy-l-arginine, N(G)-monomethyl-l-arginine, asymmetric N (G), N (G)-dimethyl-l-arginine, symmetric N (G), N (G')-dimethyl-l-arginine, ornithine, and agmatine were analyzed within 35min, using only 20microl of sample, pretreated by a simple cold ethanol cleanup procedure. Plasma samples of 35 healthy human volunteers were analyzed and results were comparable to other published data. All detection parameters of the method demonstrate that it is a reliable and efficient means for the comprehensive determination of arginine and its metabolites, making this approach suitable for routine clinical applications.  相似文献   

13.
TK0149 (designated as Tk-PdaD) of a hyperthermophilic archaeon, Thermococcus kodakaraensis, was annotated as pyruvoyl-dependent arginine decarboxylase, which catalyzes agmatine formation by the decarboxylation of arginine as the first step of polyamine biosynthesis. In order to investigate its physiological roles, Tk-PdaD was purified as a recombinant form, and its substrate dependency was examined using the candidate compounds arginine, ornithine and lysine. Tk-PdaD, expressed in Escherichia coli, was cleaved into alpha and beta subunits, as other pyruvoyl-dependent enzymes, and the resulting subunits formed an (alphabeta)(6) complex. The Tk-PdaD complex catalyzed the decarboxylation of arginine but not that of ornithine and lysine. A gene disruptant lacking Tk-pdaD was constructed, showing that it grew only in the medium in the presence of agmatine but not in the absence of agmatine. The obtained results indicate that Tk-pdaD encodes a pyruvoyl-dependent arginine decarboxylase and that agmatine is essential for the cell growth of T. kodakaraensis.  相似文献   

14.
The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.  相似文献   

15.
Agmatine, an endogenous amine derived from decarboxylation of l-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study, we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague–Dawley rats were subjected to 2 h immobilization stress daily for 7 days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day), i.p.). Likewise, endogenous agmatine levels measured by high-performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92 to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that the administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism.  相似文献   

16.
Streptococcus faecalis ATCC 11700 uses agmatine as its sole energy source for growth. Agmatine deiminase and putrescine carbamoyltransferase are coinduced by growth on agmatine. Glucose and arginine were found to exert catabolite repression on the agmatine deiminase pathway. Four mutants unable to utilize agmatine as an energy source, isolated from the wild-type strain, exhibited three distinct phenotypes. Two of these strains showed essentially no agmatine deiminase, one mutant showed negligible activity of putrescine carbamoyltransferase, and one mutant was defective in both activities. Two carbamate kinases are present in S. faecalis, one belonging to the arginine deiminase pathway, the other being induced by growth on agmatine. These two enzymes have the same molecular weight, 82,000, and seem quite different in size from the kinases isolated from other streptococci.  相似文献   

17.
Agmatine is an endogenous amine derived from the decarboxylation of arginine by arginine decarboxylase (ADC), and metabolized to putrescine by agmatinase. Exogenously administered agmatine has several biological actions including its ability to potentiate morphine analgesia and block symptoms of morphine tolerance/withdrawal in rats. To investigate the role of endogenous agmatine in this action, we sought to determine whether chronic exposure to morphine and induction of withdrawal modulate the synthesis of agmatine in rat brain and other tissues. Exposure of rats to morphine for three days significantly decreases the activity of ADC and the levels of agmatine in rat liver, kidney, brain, aorta and intestine with no changes in agmatinase activity. The precipitation of withdrawal syndrome by injecting naloxone further decreases ADC activity and agmatine levels in these tissues. We conclude that endogenous agmatine may play an important role in regulating morphine tolerance/dependence and withdrawal symptoms.  相似文献   

18.
L-arginine utilization by Pseudomonas species   总被引:7,自引:0,他引:7  
The utilization of arginine was studied in several different Pseudomonas species. The arginine decarboxylase and agmatine deiminase pathways were found to be characteristic of Pseudomonas species of group I as defined by Palleroni et al. (1974). Pseudomonas putida strains had three distinct arginine catabolic pathways initiated by arginine decarboxylase, arginine deiminase and arginine oxidase, respectively. The two former routes were also present in P. fluorescens and P. mendocina and in P. aeruginosa which also used arginine by a further unknown pathway. None of these pathways occurred in P. cepacia strains; agmatine catabolism seemed to follow an unusual route involving guanidinobutyrate as intermediate.  相似文献   

19.
Oshima T 《Amino acids》2007,33(2):367-372
Summary. Recent research progress on polyamines in extreme thermophiles is reviewed. Extreme thermophiles produce two types of unique polyamines; one is longer polyamines such as caldopentamine and caldohexamine, and the other is branched polyamines such as tetrakis(3-aminopropyl)ammonium. The protein synthesis catalyzed by a cell-free extract of Thermus thermophilus, an extreme thermophile, required the presence of a polyamine and the highest activity was found in the presence of tetrakis(3-aminopropyl)ammonium. In vitro experiments, longer polyamines efficiently stabilized double stranded nucleic acids and a branched polyamine, tetrakis(3-aminropyl)ammonium, stabilized stem-and-loop structures. In T. thermophilus, polyamines are synthesized from arginine by a new metabolic pathway; arginine is converted to agmatine and then agmatine is aminopropylated to N1-aminopropylagmatine which is converted to spermidine by an enzyme coded by a gene homologous to speB (a gene for agmatinase). In this new pathway spermidine is not synthesized from putrescine. Reverse genetic studies indicated that the unique polyamines are synthesized from spermidine.  相似文献   

20.
Agmatine, a natural polyamine produced from arginine by arginine decarboxylase, was first discovered in 1910, but its physiological significance was disregarded for a century. The recent rediscovery of agmatine as an endogenous ligand for α2-adrenergic and imidazoline receptors in the mammalian brain suggests that this amine may be a promising therapeutic agent for treating a broad spectrum of central nervous system-associated diseases. In the past two decades, numerous preclinical and several clinical studies have demonstrated its pleiotropic modulatory functions on various molecular targets related to neurotransmission, nitric oxide synthesis, glucose metabolism, polyamine metabolism, and carnitine biosynthesis, indicating potential for therapeutic applications and use as a nutraceutical to improve quality of life. An enzymatic activity of arginine decarboxylase which produces agmatine from arginine was low in mammals, suggesting that a large portion of the agmatine is supplemented from diets and gut microbiota. In the present review, we focus on and concisely summarize the beneficial effects of agmatine for treating depression, anxiety, neuropathic pain, cognitive decline and learning impairment, dependence on drugs, and metabolic diseases (diabetes and obesity), since these fields have been intensively investigated. We also briefly discuss agmatine content in foodstuffs, and a simple approach for enhancing agmatine production using the filamentous fungus Aspergillus oryzae, widely used for the production of various Asian fermented foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号