首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.  相似文献   

2.
Summary The development of human antibodies recognising mouse immunoglobulins represents an obstacle to effective antibody therapy. This study shows that patients produce modest titres of antibodies (predominantly antimouse rather than anti-idiotypic) after a single low-dose injection for immunoscintigraphy, suggesting that repeated imaging with the same or a different antibody could be a problem. Fusion of the lymphocytes from a patient who had been imaged twice previously resulted in a monoclonal antibody that specifically binds to an IgG2b isotypic determinant. Anti-IgG2b antibodies predominated in this patient's serum. Production of human monoclonal antibodies from patients given mouse monoclonal antibodies not only allows a finer dissection of the immune repertoire but also provides possible reagents for controlling the human anti-(mouse Ig) response, for selection of class-switch variants of mouse monoclonal antibodies and enhancing tumour imaging.  相似文献   

3.
A mouse monoclonal antibody OKT3, of IgG2a isotype, was isolated from hybridoma culture fluid. Sugar analysis showed the presence of sialic acid, galactose, mannose, fucose, and N-acetylglucosamine, i.e. sugars typical for N-glycosidically linked carbohydrate chains. The absence of N-acetylgalactosamine revealed that O-glycosidically linked carbohydrates were not present. The purified antibody was reduced, alkylated, and separated into heavy and light chains, and all carbohydrates were shown to be associated with the heavy chains. The N-linked carbohydrate chains were isolated as alditols using strong alkaline-borohydride degradation and further fractionated on a concanavalin A-Sepharose column and high performance ion exchange chromatography with pulsed amperometric detection. Structural analysis was carried out on the isolated oligosaccharide alditols by chemical analyses, fast atom bombardment mass spectrometry, and 500-MHz 1H NMR spectroscopy. Triantennary and biantenary types of structures were found. The triantennary structures were present as trisialo and tetrasialo forms without fucose; the tetrasialo forms were shown to contain a sequence of Neu5Ac alpha 2-3Gal beta 1-3[Neu5Ac alpha 2-6]GlcNAc beta 1- on one of the branches. The biantennary structures were present as completely sialylated nonfucosylated species and as asialo-, agalacto-, and partially fucosylated structures.  相似文献   

4.
Anaphylactic properties of mouse monoclonal IgG2a antibodies   总被引:1,自引:0,他引:1  
Mouse monoclonal antibodies (10 hybridoma antibodies specific for soluble antigens, 8 hybridoma antibodies specific for H-2 KD antigens, and 9 myeloma immunoglobulins, among which 5 had a known specificity) of the IgG1, IgG2a, IgG2b, IgG3, IgA, and IgM isotypes were studied for their ability to induce mouse mast cell degranulation in vitro, in the presence of specific antigen or after heat aggregation. Monoclonal IgG1 antibodies, as well as IgG2b, IgG3, IgA, and IgM behaved as polyclonal antibodies of corresponding classes: all IgG1 induced mast cell degranulation with typical characteristics of IgG-mediated anaphylactic reactions, whereas IgG2b, IgG3, IgA, and IgM did not. By contrast, 2 hybridoma IgG2a and 3 myeloma IgG2a induced intense mast cell degranulation that could not be explained by a contamination with IgG1 or IgG1-IgG2a hybrid molecules. IgG2a-mediated reactions were observed in four different situations: soluble antigen-hybridoma IgG2a complexes, specific H-2 antigen-bearing mast cells challenged with hybridoma IgG2a anti-H-2, heat-aggregated myeloma IgG2a, and soluble antigen-myeloma IgG2a complexes. The conclusion was reached that mouse mast cells could be activated by mouse monoclonal IgG2a antibodies through a noncytotoxic, complement-independent mechanism involving mast cell Fcγ receptors.  相似文献   

5.
Hoang JV  Gadda G 《Proteins》2007,66(3):611-620
Choline oxidase is a flavin-dependent enzyme that catalyzes the oxidation of choline to glycine-betaine, with oxygen as electron acceptor. Storage at pH 6 and -20 degrees C resulted in a change in the conformation of choline oxidase, which was associated with complete loss of catalytic activity when the enzyme was assayed at pH 6. Incubation of the inactive enzyme at pH values > or = 6.5 and 25 degrees C resulted in a fast and partial reactivation of the enzyme, which occurred with slow onset of steady state during enzymatic turnover. The rate of approaching steady state was independent of the concentrations of choline and enzyme, but increased to a limiting value with increasing pH, defining a pKa value of approximately 7.3 for an unprotonated group required for enzyme activation. Prolonged incubation of the inactive enzyme at pH 6 and temperatures > or = 20 degrees C, at which no hysteretic behavior was observed, resulted in the slow and full recovery of activity over 3 h, associated with a conformational change that reverted the enzyme to the native form. Activation of the enzyme at pH 6 was enthalpy-driven with deltaH(double dagger) and TdeltaS(double dagger) values of approximately 112 kJ mol(-1) and approximately 20 kJ mol(-1) determined at 25 degrees C. These data suggest that freezing the enzyme at low pH induces a localized and reversible conformational change that is associated with the complete and reversible loss of catalytic activity.  相似文献   

6.
Acid-induced structural changes of a mouse IgG2a monoclonal antibody (MN12) as indicated by Jiskoot et al. (Eur. J. Biochem. 201,223-232 (1991)) were studied by measuring the transient electric birefringence of MN12 in aqueous solution and in glycerol-water mixtures at different pH conditions. A multi-exponential analysis program, DISCRETE (Provencher,S.W., Biophys.J.16,27-41 (1976)), and a constrained inverse Laplace transform program, CONTIN (Provencher, S.W., Comp. Phys. Comm. 27, 213-227 (1982)) have been used to determine the number of exponentials needed to represent the data and their decay times. Measurement of the time-resolved electric field induced birefringence makes it possible to study rotational processes on a timescale from several tens of nanoseconds to microseconds. This enabled us to monitor the segmental flexibility and the rotational motion of single antibody molecules as well as the occurrence of aggregates. The results show an increase in hydrodynamic dimensions of MN12 upon lowering the pH from 6.6 to 2.7. Additionally, the original segmental flexibility, which could be monitored for the samples in glycerol-water mixtures, is altered at low pH. The results have been interpreted as swelling of MN12 followed by dimerization.  相似文献   

7.
We have identified the optimal epitope, 21TQTPT25, in the tandem repeat of mucin 2 (MUC2) glycoprotein by using glycoprotein-specific monoclonal antibody, MAb 994, and synthetic, overlapping and truncated oligopeptides corresponding to the sequence 13TPTPTPTGTQTPTT26. We found that peptides containing the 21TQTPT25 sequence were able to inhibit the 994 antibody binding and also peptides 21TQTPT25 and 17TPTGTQTPT25 were the most inhibitory compounds with the lowest IC50 value (IC50=4 and 3 microM, respectively) tested. Interestingly, 21TQTPT25 peptide adopts an unordered structure even in TFE, a solvent that promotes an ordered conformation, as detected by circular dichroism and Fourier-transform infrared spectroscopy. However, Thr at position 26 or amidation of Thr25 at the C-terminus results in a much weaker (3 orders of magnitude) MAb interaction, which can be due to the presence of a turn conformation in peptides with a T26 or an amide C-terminus. We have also observed that MAb 994 recognized two other pentapeptides with the TX1TX2T motif, like 13TPTPT17 (IC50=180 microM) and 19TGTQP23 (IC50=65 microM), whose sequences are present in the native glycoprotein. These findings might suggest that in the MUC2 tandem repeat unit there are multiple antigenic sites available for recognition in underglycosylated tumor tissue and also explain the heteroclitic nature of MAb 994.  相似文献   

8.
A mouse monoclonal antibody (mAb 425) with therapeutic potential was 'humanized' in two ways. Firstly the mouse variable regions from mAb 425 were spliced onto human constant regions to create a chimeric 425 antibody. Secondly, the mouse complementarity-determining regions (CDRs) from mAb 425 were grafted into human variable regions, which were then joined to human constant regions, to create a reshaped human 425 antibody. Using a molecular model of the mouse mAb 425 variable regions, framework residues (FRs) that might be critical for antigen-binding were identified. To test the importance of these residues, nine versions of the reshaped human 425 heavy chain variable (VH) regions and two versions of the reshaped human 425 light chain variable (VL) regions were designed and constructed. The recombinant DNAs coding for the chimeric and reshaped human light and heavy chains were co-expressed transiently in COS cells. In antigen-binding assays and competition-binding assays, the reshaped human antibodies were compared with mouse 425 antibody and to chimeric 425 antibody. The different versions of 425-reshaped human antibody showed a wide range of avidities for antigen, indicating that substitutions at certain positions in the human FRs significantly influenced binding to antigen. Why certain individual FR residues influence antigen-binding is discussed. One version of reshaped human 425 antibody bound to antigen with an avidity approaching that of the mouse 425 antibody.  相似文献   

9.
10.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

11.
Monoclonal antibodies are an important therapeutic entity, and knowledge of antibody pharmacokinetics has steadily increased over the years. Despite this effort, little is known about the extent of IgG antibody degradation in different tissues of the body. While studies have been published identifying sites of degradation with the use of residualizing and non-residualizing radiolabels, quantitative tissue clearances have not yet been derived. Here, we show that in physiologically-based pharmacokinetic (PBPK) models we can combine mouse data of Indium-111 and Iodine-125 labeled antibodies with prior physiologic knowledge to determine tissue-specific intrinsic clearances. Unspecific total tissue clearance (mL/day) in the mouse was estimated to be: liver = 4.75; brain = 0.02; gut = 0.40; heart = 0.07; kidney = 0.97; lung = 0.20; muscle = 3.02; skin = 3.89; spleen = 0.45; rest of body = 2.16. The highest catabolic activity (per g tissue) was in spleen for an FcRn wild-type antibody, but shifts to the liver for an antibody with reduced FcRn affinity. In the model developed, this shift can be explained by the liver having a greater FcRn-mediated protection capacity than the spleen. The quantification of tissue intrinsic clearances and FcRn salvage capacity increases our understanding of quantitative processes that drive the therapeutic responses of antibodies. This knowledge is critical, for instance to estimate the non-specific cellular uptake and degradation of antibodies used for targeted delivery of payloads.  相似文献   

12.
In this paper we describe an immunoenzymatic assay based on a rat monoclonal antibody (Ram kappa) developed to determine mouse IgG concentration, which is widely used for samples obtained on purification processes, like supernatant waste and the content of IgG in the vaccine (rHBsAg). This assay involves the use of a rat antibody-horseradish peroxidase-conjugated for the revealing of the antigen-antibody reaction. The rat antibody was produced in cell culture using a dialysis tube (DT). The immunoassay was standardized following several concepts, such as specificity, precision, and linearity. The result obtained permitted us to replace the use of polyclonal antibodies to determine the kappa light chain mouse antibodies by a rat monoclonal antibody of high sensibility and reproducibility. The assay permitted a reliable measurement of murine kappa Ig up to 0.68 ng/ml and was capable of quantifying 6.25 ng/ml. Due to the high frequency of the kappa light chain in mouse antibodies this system acquires a great application.  相似文献   

13.
R24, a mouse IgG3 monoclonal antibody (MAb) against ganglioside GD3 (Neu5Acalpha8Neu5Acalpha3Gal beta4Glcbeta1Cer), can block tumor growth as reported in a series of clinical trials in patients with metastatic melanoma. The IgG molecule basically contains an asparagine-linked biantennary complex type oligosaccharide on the C(H)2 domain of each heavy chain, which is necessary for its in vivo effector function. The purpose of this study was to investigate the biotechnological production and particularly the glycosylation of this clinically important MAb in CO(2)/HCO(3) (-) (pH 7.4, 7.2, and 6.9) and HEPES buffered serum-free medium. Growth, metabolism, and IgG production of hybridoma cells (ATCC HB-8445) were analyzed on a 2-L bioreactor scale using fed-batch mode. Specific growth rates (mu) and MAb production rates (q(IgG)) varied significantly with maximum product yields at pH 6.9 (q(IgG) = 42.9 microg 10(-6) cells d(-1), mu = 0.30 d(-1)) and lowest yields in pH 7.4 adjusted batches (q(IgG) = 10.8 microg 10(-6) cells d(-1), mu = 0.40 d(-1)). N-glycans were structurally characterized by high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry (MS). The highest relative amounts of agalacto and monogalacto biantennary complex type oligosaccharides were detected in the pH 7.2 (46% and 38%, respectively) and pH 6.9 (44% and 40%, respectively) cultivations and the uppermost quantities of digalacto (fully galactosylated) structures in the pH 7.4 (32%) and the HEPES (26%) buffered fermentation. In the experiments with HEPES buffering, antibodies with a molar Neu5Ac/Neu5Gc ratio of 3.067 were obtained. The fermentations at pH 7.2 and 6.9 resulted in almost equal molar Neu5Ac/Neu5Gc ratios of 1.008 and 0.985, respectively, while the alkaline shift caused a moderate overexpression of Neu5Ac deduced from the Neu5Ac/Neu5Gc quotient of 1.411. Different culture buffering gave rise to altered glycosylation pattern of the MAb R24. Consequently, a detailed molecular characterization of MAb glycosylation is generally recommended as a part of the development of MAbs for targeted in vivo immunotherapy to assure biochemical consistency of product lots and oligosaccharide-dependent biological activity.  相似文献   

14.
 We reported previously that the blood clearance of injected mouse IgG2a was extremely rapid in many strains of nude and nu/+ mice. In an attempt to determine the cause of this phenomenon, the levels of endogenous IgG2a in the blood of these mice was assayed. It was found that the serum level of IgG2a was extremely low in many of these mice, below 50 μg/ml, which is 20–100 times lower than the expected normal value. Great heterogeneity between individual mice was observed in their blood level of IgG2a, and there was an excellent correlation between low blood IgG2a levels and rapid clearance of injected IgG2a. Thus, the blood IgG2a levels are so low that a novel, previously undescribed effect occurs, namely the rapid clearance of small amounts of injected IgG2a. The clearance is due primarily to binding sites in the spleen and liver. The low level of endogenous IgG2a is not due to the lack of a thymus, since it occurs in nu/+ as well as nude mice, but can probably be attributed to the very clean environment in which these mice are raised. In assays of sera from approximately 50 mouse strains, low IgG2a levels were found in all nude colonies and also in some normal mouse strains. Some nude mice displayed relatively normal IgG2a clearance rates despite having low levels of endogenous IgG2a. In repeated bleedings of individual mice, IgG2a levels were found to fluctuate greatly. A similar clearance effect was observed with a human IgG1 Ab injected into mice. This rapid clearance of injected IgG, of certain subclasses, represents a practical problem for many experiments in which antibodies are used for diagnosis or therapy, and several methods of circumventing the problem are discussed. Received: 15 August 1977 / Accepted: 14 October 1997  相似文献   

15.
A mouse hybridoma selected and cloned for anti-TNP specificity produced three distinct monoclonal antibody species that were separated on protein A-Sepharose by stepwise acid elution. The IgG1 kappa product of the parental myeloma was eluted at pH 6.0. An IgG2a kappa bivalent anti-TNP antibody was eluted at pH 4.5, whereas elution at pH 5.0 yielded a hybrid IgG1-2a kappa monovalent anti-TNP antibody. The IgG2a molecules agglutinated TNP-conjugated sheep erythrocytes (TNP-ES) and lysed TNP-ES in the presence of normal human serum (NHS). Hybrid IgG1-2a antibody was also capable of lysing the cells in NHS, although it did not agglutinate TNP-ES. A threshold in monovalent antibody input was necessary for the lysis of TNP-ES, indicating a requirement for a minimal density of bound monovalent IgG to trigger complement activation. Lysis occurred in NHS-VBS++ but not in NHS-MgEGTA, and it was associated with a dose-dependent consumption of C1, C4, and C2 hemolytic activities. Quantitation of the antibody bound to TNP-ES when using radiolabeled rabbit anti-mouse Fab antibody demonstrated that for similar inputs, 5.4 times as much bivalent as monovalent antibody bound to TNP-ES. When similar amounts of antibody were effectively bound to TNP-ES, monovalent hybrid IgG1-2a was five times less efficient than bivalent IgG2a to yield 50% cell lysis in the presence of NHS. These results indicate that neither bivalent binding nor the presence of two identical heavy chains are necessary requirements for antibody-dependent activation of the classical complement pathway.  相似文献   

16.
《MABS-AUSTIN》2013,5(8):1479-1491
ABSTRACT

Significant amounts of soluble product aggregates were observed during low-pH viral inactivation (VI) scale-up for an IgG4 monoclonal antibody (mAb IgG4-N1), while small-scale experiments in the same condition showed negligible aggregation. Poor mixing and product exposure to low pH were identified as the root cause. To gain a mechanistic understanding of the problem, protein aggregation properties were studied by varying critical parameters including pH, hold time and protein concentration. Comprehensive biophysical characterization of product monomers and aggregates was performed using fluorescence-size-exclusion chromatography, differential scanning fluorimetry, fluorescence spectroscopy, and dynamic light scattering. Results showed IgG4-N1 partially unfolds at about pH 3.3 where the product molecules still exist largely as monomers owing to strong inter-molecular repulsions and favorable colloidal stability. In the subsequent neutralization step, however, the conformationally changed monomers are prone to aggregation due to weaker inter-molecular repulsions following the pH transition from 3.3 to 5.5. Surface charge calculations using homology modeling suggested that intra-molecular repulsions, especially between CH2 domains, may contribute to the IgG4-N1 unfolding at ≤ pH 3.3. Computational fluid dynamics (CFD) modeling was employed to simulate the conditions of pH titration to reduce the risk of aggregate formation. The low-pH zones during acid addition were characterized using CFD modeling and correlated to the condition causing severe product aggregation. The CFD tool integrated with the mAb solution properties was used to optimize the VI operating parameters for successful scale-up demonstration. Our research revealed the governing aggregation mechanism for IgG4-N1 under acidic conditions by linking its molecular properties and various process-related parameters to macroscopic aggregation phenomena. This study also provides useful insights into the cause and mitigation of low-pH-induced IgG4 aggregation in downstream VI operation.  相似文献   

17.
R24 is a mouse IgG3 monoclonal antibody (mab) that reacts with the ganglioside GD3 expressed by cells of neuroectodermal origin. The anti-tumor activity of R24 has been demonstrated in initial phase I and pilot trials in patients suffering from metastatic melanoma. The purpose of this study was to investigate the biotechnological production and particularly the glycosylation of this clinically important antibody. Growth, metabolism, and IgG production of R24 secreting hybridoma cells were analyzed on 1 L bioreactor bench scale using repeated-batch mode. The amount of 57 mg of pure mab was obtained from 1.6 L crude supernatant by protein A chromatography. Western blot binding assays with sugar-specific lectins revealed glycosylation of the heavy chains, whereas no carbohydrates were detectable on the light chains. Because glycosylation is essential for antibody effector functions in vivo (such as complement fixation or binding to macrophage Fc receptors), mab R24 was subjected to both enzymatic deglycosylation using PNGase F and chemical deglycosylation by hydrazinolysis. Released glycans were structurally characterized by high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), matrix assisted laser desorption ionization time-of-flight (MALDI-TOF), and electrospray ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Six major biantennary chains of the complex glycosylation phenotype were found with variations in galactosylation and core fucosylation. The predominant N-linked structure, indicating the high degree of agalactosyl glycoforms, was the agalacto biantennary chain with a relative percentage of 57% (51% core-fucosylated, 6% nonfucosylated). The second most abundant oligosaccharide was the monogalacto biantennary chain amounting to 30% (26% core- and 4% nonfucosylated). The antibody contained 0.46 microg sialic acid per mg protein, which splits into 0.243 microg Neu5Gc and 0.217 microg Neu5Ac, corresponding to a Neu5Ac:Neu5Gc ratio of 1:1.06. Furthermore, the antigen specificity of R24 was determined by immunodetection of GD3 on thin-layer chromatograms, and real time GD3-antibody binding interactions were measured with an optical biosensor (BIAcore). From the structural data obtained in this study it is concluded that glycosylation of the antibody may be important in the clinical outcome of targeted anti-cancer immunotherapy.  相似文献   

18.
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies.  相似文献   

19.
Globo H (Fuc12Gal13GalNAc13Gal14Gal14Glc) is a carbohydrate structure that shows enhanced expression in many human carcinomas. From mice immunized with a globo H-KLH (keyhole limpet hemocyanin) synthetic conjugate an IgG3 monoclonal antibody (mAb VK-9) was derived that recognizes the globo H structure. Serological analysis showed that the minimal structure recognized by this mAb was the tetrasaccharide sequence Fuc12Gal13GalNAc13Gal. An isomeric structure with an internal GalNAc linkage was also recognized but less efficiently. mAb VK-9 did not react with many related structures, such as galactosylgloboside, globoside, H type 1, H type 2 blood group structures or fucosyl-gangliotetraosyl ceramide, but did react weakly with globo A ceramide. Not only did mAb VK-9 react with carbohydrate-protein conjugates but it could also recognize globo H-ceramide and human tumor cells expressing globo H. These results suggest that globo H-KLH could be explored as a vaccine in the treatment of carcinoma patients.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):568-576
Antibody glycosylation is a common post-translational modification and has a critical role in antibody effector function. The use of glycoengineering to produce antibodies with specific glycoforms may be required to achieve the desired therapeutic efficacy. However, the modified molecule could have unusual behavior during development due to the alteration of its intrinsic properties and stability. In this study, we focused on the differences between glycosylated and deglycosylated antibodies, as aglycosyl antibodies are often chosen when effector function is not desired or unimportant. We selected three human IgG1 antibodies and used PNGase F to remove their oligosaccharide chains. Although there were no detected secondary or tertiary structural changes after deglycosylation, other intrinsic properties of the antibody were altered with the removal of oligosaccharide chains in the Fc region. The apparent molecular hydrodynamic radius increased after deglycosylation based on size-exclusion chromatography analysis. Deglycosylated antibodies exhibited less thermal stability for the CH2 domain and less resistance to GdnHCl induced unfolding. Susceptibility to proteolytic cleavage demonstrated that the deglycosylated version was more susceptible to papain. An accelerated stability study revealed that deglycosylated antibodies had higher aggregation rates. These changes may impact the development of aglycosyl antibody biotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号