首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

We have isolated and characterized a cDNA from the marine sponge Geodia cydonlum coding for a new member of the tyrosine protein kinase (TK) family. The cDNA encodes a protein of Mr = 68 710, termed GCTK, which is homologous to class II receptor tyrosine kinases (RTKs). GCTK contains conserved amino acids (aa) characteristic of all protein kinases, and the sequences DLATRN and PIRWMATE which are highly specific for TKs. Furthermore, the sequence N-L-Y-x(3)-Y-Y-R Is highly homologous to the sequence D-[LIV]-Y-x(3)-Y-Y-R found only in class II RTKs. The sponge TK, when compared with mammalian class II RTKs, shows maximum 31% homology in the TK domain indicating that this the oldest member of class II RTK started to diverge from the common ancestral protein kinase 650 million years ago. Using GCTK as a probe we identified three mRNA signals ranging from 2μ6 to 0μ6 kb. Kinase activity was localized only in the cell membranes from G. cydonium (Mr = 65 000), and was not detected in the cytosol of this organism. Antibodies raised against a synthetic peptide, corresponding to the aa residues within the catalytic domain of the sponge TK, recognized strongly two proteins of Mr = 65 000; these proteins, present in membrane fractions, also bound to the anti-phosphotyrosine antibody. These data suggest that the TK cloned from the sponge is a membrane-associated 65 kDa protein. Moreover these results demonstrate that RTKs are present from the lowest group of multicellular eukaryotes, sponges, to mammals, and may suggest that RTKs are involved in a signal transduction pathway.  相似文献   

2.
3.
《Gene》1998,207(2):227-233
The receptor tyrosine kinase of the marine sponge Geodia cydonium features two extracellular Ig-like domains in which we recently documented RT-PCR polymorphism among individuals. Genomic-PCR analysis presented here revealed 14 unique sequences from four sponges, differing predominantly in the sequence of an intron which splits the Ig-like domains. Nevertheless, analysis of putative coding regions in 19 distinct clones (156–159 aa) from seven sponges revealed 69 positions of nucleotide substitutions, 67.6% of them non-synonymous, translating into 43 positions of divergent residues. Excluding aa deletions, these 19 sequences share pairwise aa identities of 89–99%. In three sponges, four or five unique Ig-like coding regions were scored. PCR amplification across this intron revealed multiple bands, polymorphic among five of six sponges. Further substantiated by Southern and Northern blots, it is evident that the genome of G. cydonium harbors multicopies of moderately divergent Ig-like domains. Presently, this only appears paralleled by the human KIR multigene family of NK cells MHC class I-specific receptors, which consist of two or three moderately divergent extracellular Ig-like domains.  相似文献   

4.
Wang T  Secombes CJ 《Immunogenetics》2003,55(9):615-628
Three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway have been fully sequenced and their expression investigated in rainbow trout (Oncorhynchus mykiss). Trout C1r cDNA encodes a 707-amino-acid (aa) protein with a theoretical M r of 77,200. The trout translation shows highest homology with carp C1r/s, and lower, equal homologies to mammalian C1r and C1s, and MASPs from other vertebrate species. However, phylogenetic analysis and structural features suggest that the trout sequence, together with the two carp sequences, are the orthologues of mammalian C1r. The trout C4 cDNA encodes a 1,724-aa protein with a theoretical M r of 192,600. The trout translation shows higher homologies to the carp C4B and medaka C4, but lower homologies to C4 from other species and the carp C4A. It has a predicted signal peptide of 22 aa, a -chain of 773 aa, a -chain of 635 aa and a -chain of 288 aa. Trout C1 inhibitor cDNA encodes a 611-aa protein with a theoretical M r of 68,700. The trout translation has a C-terminal serpin domain with high homologies with mammalian counterparts (~37% identities), and a longer N-terminus, with no significant homology to other serpins, which contains two Ig-like domains. A molecule containing two Ig-like domains followed by a serpin domain, has also been found in an EST clone from another bony fish, the Japanese flounder. This suggests a unique structural feature of C1 inhibitor in fish. The functional significance of the Ig domains is discussed. The liver is the major site of expression of the three trout complement components, C1r, C4 and C1 inhibitor, although their expression is also detectable in other tissues. The extra-hepatic expression of complement genes may be important for local protection and inflammatory responses. Low-level constitutive expression of the three components was also detectable in a trout monocyte/macrophage cell line RTS-11, but only the expression of C4 could be upregulated by LPS.The nucleotide sequence data will appear in the EMBL/DDBJ/GenBank nucleotide sequence database under the following accession numbers: AJ519929 (trout C1r), AJ519930 (trout C1 inhibitor), AJ544262 (trout C4) and BN000290 (flounder C1 inhibitor)  相似文献   

5.
Cells from metazoan organisms are eliminated in a variety of physiological and pathophysiological processes by apoptosis. In this report, we describe the cloning and characterization of molecules from the marine sponges Geodia cydonium and Suberites domuncula, whose domains show a high similarity to those that are found in molecules of the vertebrate Bcl-2 superfamily and of the death receptors. The Bcl-2 proteins contain up to four Bcl-2 homology regions (BH). Two Bcl-2-related molecules have been identified from sponges that are provided with two of those regions, BH1 and BH2, and are termed Bcl-2 homology proteins (BHP). The G. cydonium molecule, BHP1_GC, has a putative size of 28,164, while the related sequence from S. domuncula, BHP1_SD, has a M r of 24,187. Phylogenetic analyses of the entire two sponge BHPs revealed a high similarity to members of the mammalian Bcl-2 superfamilies and to the Caenorhabditis elegans Ced-9. When the two domains, BH1 and BH2, are analyzed separately, again the highest similarity was found to the members of the Bcl-2 superfamily, but a clearly lower relationship to the C. elegans BH1 and BH2 domains in Ced-9. In unrooted phylogenetic trees the sponge BH1 and BH2 are grouped among the mammalian sequences and are only distantly related to the C. elegans BH domains. The analysis of the gene structure of the G. cydonium BHP showed that the single intron present is located within the BH2 domain at the same position as in C. elegans and rat Bcl-xL. In addition, a sponge molecule comprising two death domains has been characterized from G. cydonium. The two death domains of the potential proapoptotic molecule GC_DD2, M r 24,970, share a high similarity with the Fas-FADD/MORT1 domains. A death domain-containing molecule has not been identified in the C. elegans genome. The phylogenetic analysis revealed that the sponge domain originated from an ankyrin building block from which the mammalian Fas-FADD/MORT1 evolved. It is suggested that the apoptotic pathways that involve members of the Bcl-2 superfamily and of the death receptors are already present in the lowest metazoan phylum, the Porifera. Received: 27 July 1999 / Accepted: 28 December 1999  相似文献   

6.
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulin-like receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, mouse and rat, including also invertebrate sequences, together form a second branch. It is concluded that the RTK molecules have evolved in sponges prior to the "Cambrian Explosion" and have contributed to the rapid appearance of the higher metazoan phyla and that sponges are, as a taxon, also monophyletic. Due to the fact that protein tyrosine kinases in general and RTKs in particular have only been identified in Metazoa, they are, as a group qualified, to be considered as an autapomorphic character of all metazoan phyla.  相似文献   

7.
The origin of the ability of immunoglobulins (Ig) and T-cell receptors (TCRs) to specifically recognize antigens is related to the evolutionary development of proteins of the immunoglobulin superfamily (IgSF). The IgSF proteins are characterized by specific domain organization of molecules and statistically significant homology with known Ig. Four types of Ig domains (V1, V2, C1, and C2), differing from one another both in variations of their spatial organization and in the number of amino acid residues have been distinguished. Immunoglobulin superfamily comprises Ig; TCRs; class I and II major histocompatibility complex (MHC) molecules; one-domain proteins of thymocytes and T-cells (Thy-1); myelin protein P0; 2-microglobulin; two-domain proteins, such as sponge receptor tyrosine kinase (RTK), sponge adhesive protein (SAP), Drosophila tyrosine-kinase receptor (DTCR), Xenopus and human cortical-thymocyte receptors (CTX and CTH), etc.; and a large group of adhesins, coreceptors, and Ig receptors with varying number of domains. Evolutionary development of IgSF began with the evolvement of chaperones, Thy-1, and P0 of prokaryotes and unicellular eukaryotes. Mutations, duplications, and translocations of the genes controlling both V and C domains yielded proteins with different numbers and combinations of these domains. All IgSF proteins are divided into two groups. The first group includes the proteins with nonrearranging V2 domains and homophilic mode of interaction; the second, the proteins with rearranging V1 domains and heterophilic mode of interaction (Ig, TCRs). The ability for heterophilic antigen-binding mode of interaction was apparently acquired due to the introduction of recombination-activating retroviral genes (RAG1 and RAG2) into the genome of Gnathostomata ancestors.  相似文献   

8.
We have analyzed the gene that encodes receptor tyrosine kinase (RTK) from the marine sponge Geodia cydonium, which belongs to the most ancient and simple metazoan groups, the Porifera. RTKs are enzymes found only in metazoa. The sponge gene contains two introns in the extracellular part of the protein. However, the rest of the protein (transmembrane and intracellular part), including the tyrosine kinase (TK)-domain, is encoded by a single exon. In contrast, all TK genes, so far known only from higher animals (vertebrates), contain several introns especially in the TK-domain. The TK-domain of G. cydonium shows similarity with numerous members of receptor as well as nonreceptor TKs. Phylogenetic analysis of the sponge TK-domain indicates that this enzyme branched off first from the common tree of metazoan TK proteins. Consequently, we assume that introns, found in the TK-domains of genes from higher animals, were inserted into these genes after splitting off the sponge taxa from other metazoan organisms (over 600 million years ago). Our results support the view that ancient genes were not ``in pieces.' Received: 8 August 1996 / Accepted: 4 November 1996  相似文献   

9.
Sponges [Porifera] are the phylogenetically oldest phylum of the Metazoa. They are provided with both cellular and humoral allorecognition systems. The underlying molecules are not yet known. To study allorecognition in sponges we first determined the frequency of graft rejection in a natural population of the marine sponge Geodia cvdonium. We then determined, for the first time at the molecular level, the degree of sequence polymorphism in segments of one molecule which may be related to sponge allorecognition and host defense: the Ig-like domains from the receptor tyrosine kinase [RTK]. Thirty six pairs of auto- and allografts were assayed, either by parabiotic attachment or insertion of grafts. All of the autografts fused, while only two allografts fused and 34 pairs were incompatibile. Rejection among the parabiotic allografts was characterized by the formation of a collagenous barrier, while the allografts that were inserted into the host underwent destruction. At the molecular level we first cloned to completion the 5′-end of sponge RTK, which displays a Pro-Ser-Thr-rich sequence; this is thought to act as a module of cell adhesion proteins. Then we analyzed RT-PCR products of amplification across the two Ig-like domains of RTK (about 500 bp), from two pairs of fusing sponges and one pair of rejecting sponges. High levels of polymorphism were recorded, including 18 nucleotide-substitution positions and a tri-nucleotide deletion, which translate into 13 polymorphic amino acid positions. Two of the six sponges were scored as heterozygotes. Among 9 informative polymorphic sites that were tested for linkage disequilibrium, 11 pairwise comparisons were found to be significant, implying the possibility of distinguishable alleles in this locus. To the best of our knowledge this is the first report of polymorphism in Ig-like domains of a receptor from invertebrates that may be associated with allorecognition. This data attests also that fusion in sponges is not confined to genetically identical individuals.  相似文献   

10.
 In humans, the 30 000 M r Rhesus (Rh) polypeptide D (RhD) is a dominant antigen (Ag) of the Rh blood group system. To date, an Rh-like protein has been found in chimpanzees, gorillas, gibbons, and rhesus monkeys. Related to the 30 000 M r Rh Ag protein are two polypeptides of 50 000 M r , the human 50 000 M r Rh Ag and the RhD-like protein from Caenorhabditis elegans. The function of all these proteins is not sufficiently known. Here we characterize a cDNA clone (GCRH) encoding a putative 57 000 M r polypeptide from the marine sponge Geodia cydonium, which shares sequence similarity both to the RhD Ag and the Rh50 glycoprotein. The sponge Rh-like protein comprises 523 aa residues; hydropathy analysis hints at the presence of ten transmembrane domains. An N-terminal hydrophobic cleavage signal sequence is missing, suggesting that the first membrane-spanning domain of the sponge Rh-like protein acts as a signal-anchor sequence. The sponge Rh-like protein, like the human Rh50, lacks the CLP motif which is characteristic of the 30 000 M r RhD. In addition, the hydropathy profile of the sponge Rh-like protein is of a similar size and shape as that of human Rh50. This data indicates that the RhD and its structurally related Rh50 glycoprotein, which are highly immunogenic in humans, share a common ancestral molecule with the G. cydonium Rh-like protein. Received: 9 April 1997 / Revised: 29 May 1997  相似文献   

11.
Porifera (sponges) represent the most ancient, extant metazoan phylum. They existed already prior to the 'Cambrian Explosion'. Based on the analysis of aa sequences of informative proteins, it is highly likely that all metazoan phyla evolved from only one common ancestor (monophyletic origin). As 'autapomorphic' proteins which are restricted to Metazoa only, integrin receptors, receptors with scavenger receptor cysteine-rich repeats, neuronal-like receptors and protein-tyrosine kinases (PTKs) have been identified in Porifera. From the marine sponge Geodia cydonium, a receptor tyrosine kinase (RTK) has been cloned that comprises the characteristic structural topology known from other metazoan RTKs; an extracellular domain, the transmembrane region, the juxtamembrane region and the TK domain. Only two introns, within the coding region of the RTK gene, could be found, which separate the two highly polymorphic immunoglobulin-like domains, found in the extracellular region of the enzyme. The functional role of this sponge RTK could be demonstrated both in situ (grafting experiments) and in vitro (increase of intracellular Ca2+ level). Upstream of this RTK gene, two further genes coding for tyrosine kinases (TK) have been identified. Both are intron-free. The deduced aa sequence of the first gene shows no transmembrane segment; from the second gene--so far--only half of its catalytic domain is known. A phylogenetic analysis with the TK domains from these sequences and a fourth, from a novel scavenger RTK (all domains comprise the signature for the TK class II receptors), showed that they are distantly related to the insulin and insulin-like receptors. The presented findings support the 'introns-late' hypothesis for such genes that encode 'metazoan' proteins. It is proposed that the TKs evolved from protein-serine/threonine kinases through modularization and subsequent exon shuffling. After formation of the ancestral TKs, the modules lost the framing introns to protect the evolutionary novelty. Since cell culture systems of sponges are now available, it can be expected that soon also those mechanisms that control the developmental programs will be unravelled.  相似文献   

12.
We have isolated and characterized two cDNAs from the marine sponge Geodia cydonium coding for a new member of a receptor tyrosine kinase of class II. The deduced amino acid sequence shows two characteristic domains: (i) the tyrosine kinase domain; and (ii) and immunoglobulin-like domain. The latter part shows high homology to the vertebrate C2 type immunoglobulin domain. This result demonstrates that immunoglobulin domains are not recent achievements of higher animals but exist also in those animals which have diverged from other organisms about 800 million years ago.  相似文献   

13.
《Gene》1996,174(1):3-8
We have previously reported the cloning of two partial cDNAs corresponding to two quail (Coturnix coturnix japonica) receptor tyrosine kinases (RTKs), named Quek 1 and Quek 2, and their expression in endothelial cells of the early avian embryo. We here report the cloning of the full-size cDNAs for both molecules. Sequence comparison shows that Quek 1 and 2 share an overall amino acid (aa) identity of 49%. They both comprise seven extracellular immunoglobulin-like (Ig-like) domains, a single transmembrane domain, and an intracellular kinase domain split into two by a 70 aa insertion. These structural characteristics are shared by the members of the recently discovered VEGF receptor (VEGFR) family. We have compared the sequences of Quek 1 and 2 to the other VEGFRs. At the aa level, Quek 1 is most closely related to KDR/flk-1 (VEGFR 2) (aa identity of 69% and 71%, respectively). Quek 2 shows a similar degree of aa identity to flt-4 (VEGFR 3). Quek 1 and 2 display a lower homology to flt-1 (VEGFR 1) (about 45% aa identity). These data suggest that Quek 1 and 2 are the avian homologues of VEGFRs 2 and 3, respectively.  相似文献   

14.
15.
Sponges [Porifera] are the phylogenetically oldest phylum of the Metazoa. They are provided with both cellular and humoral allorecognition systems. The underlying molecules are not yet known. To study allorecognition in sponges we first determined the frequency of graft rejection in a natural population of the marine sponge Geodia cvdonium. We then determined, for the first time at the molecular level, the degree of sequence polymorphism in segments of one molecule which may be related to sponge allorecognition and host defense: the Ig-like domains from the receptor tyrosine kinase [RTK]. Thirty six pairs of auto- and allografts were assayed, either by parabiotic attachment or insertion of grafts. All of the autografts fused, while only two allografts fused and 34 pairs were incompatibile. Rejection among the parabiotic allografts was characterized by the formation of a collagenous barrier, while the allografts that were inserted into the host underwent destruction. At the molecular level we first cloned to completion the 5'-end of sponge RTK, which displays a Pro-Ser-Thr-rich sequence; this is thought to act as a module of cell adhesion proteins. Then we analyzed RT-PCR products of amplification across the two Ig-like domains of RTK (about 500 bp), from two pairs of fusing sponges and one pair of rejecting sponges. High levels of polymorphism were recorded, including 18 nucleotide-substitution positions and a tri-nucleotide deletion, which translate into 13 polymorphic amino acid positions. Two of the six sponges were scored as heterozygotes. Among 9 informative polymorphic sites that were tested for linkage disequilibrium, 11 pairwise comparisons were found to be significant, implying the possibility of distinguishable alleles in this locus. To the best of our knowledge this is the first report of polymorphism in Ig-like domains of a receptor from invertebrates that may be associated with allorecognition. This data attests also that fusion in sponges is not confined to genetically identical individuals.  相似文献   

16.
Receptor tyrosine kinases (RTKs) play an important role in intercellular signal transduction through the plasma membrane. RTKs are integral membrane proteins activated upon lateral homo- or heterodimerization involving their transmembrane domain. The polymorphism and mutations in RTK transmembrane (TM) domains are directly associated with a number of human diseases. The family of epidermal growth factor receptors, ErbB, is an important class of RTKs participating in human cell growth, development, and differentiation. In order to investigate the influence of pathogenic mutations in ErbB TM domains on the structural and dynamic properties of these receptors and on specific interactions of their TM domains, we have developed highly effective systems of bacterial expression and purification of recombinant transmembrane fragments ErbB2641–684 with pro-oncogenic substitution of Val659 by Glu or Gln. Transmembrane fragments were obtained in Escherichia coli BL21 (DE3) pLysS as a fusion protein with thioredoxin A. The purification protocol includes immobilized metal ion affinity chromatography (IMAC) and cation-exchange chromatography. The application of the protease Thrombin for hybrid protein hydrolysis considerably reduces financial expenditure as compared to the analogous protocols. The described techniques allow obtaining the milligram quantities of ErbB2 transmembrane fragments and its 15N-/[15N, 13C]-isotope-labeled derivatives for the analysis of their spatial structure using high-resolution heteronuclear NMR spectroscopy in a membrane-mimicking milieu.  相似文献   

17.
18.
Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil spongeGeodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdr1.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species fromArchaea toVertebrata, and (ii) some special nucleotide similarities. This study was supported by grant ofInternal Grant Agency of the Ministry of Public Health of the Czech Republic no. 6747-3.  相似文献   

19.
The phylogenetic relationships among the three classes of the Porifera-Demospongiae, Calcarea and Hexactinellida-are still unresolved, despite the use of molecular analyses of rRNA. To determine whether phylogenetic resolution of these classes is possible based on genes coding for specific proteins, in the present study the genes for the 70 kDa heat shock protein [Hsp70] were isolated from Rhabdocalyptus dawsoni [Hexactinellida] and from Sycon raphanus [Calcarea], and compared to that previously isolated from the demosponge Geodia cydonium. The gene from R. dawsoni is 2021 bp long and encodes a predicted Hsp70 of Mr 77, 697; the protein comprises the characteristic sites of eukaryotic, cytoplasmic Hsp70 polypeptides. The Hsp70 isolated from cDNA from S. raphanus is 2326 bp long. It encodes a potential polypeptide of Mr 85, 927 and belongs to the same class of Hsp70s. All three sponge sequences for Hsp70 were found to be highly identical to both human and plant Hsp70s. The degree of identity at the amino acid (aa) level between the sponge sequences and the human sequence for Hsp70 is 77%-84% and at the nucleotide (nt) level, between 69% and 75%. Resolution of the phylogenetic relationship between the three classes of sponges based on the Hsp70 was not possible due to the high degree of identity [similarity] of their respective aa sequences, which ranged from 80% [90%] to 82% [91%]. The evolutionary rates-Kaa-values-calculated for the sponge Hsp70 molecules, are low, reflecting the strong functional contraints placed upon these polypeptides. These values range from 0.125 times 10-9 for G. cydonium and R. dawsoni to 0.087 times 10-9 for S. raphanus. Higher values have previously been reported for the G. cydonium galectin molecule [Kaa-value of 1.7 times 10-9] and the receptor tyrosine kinase [1.24 times 10-9] from the same animal. The occurrence of at least one double mutation, in the codon for the aa Ser in the conserved regions of the Hsp70 sequences, also suggests that these molecules are subjected to strong functional constraints.  相似文献   

20.
Immunoglobulin (Ig)-like domains are found frequently on the surface of tailed double-stranded DNA bacteriophages, yet their functional role remains obscure. Here, we have investigated the structure and function of the C-terminal Ig-like domain of gpV (gpVC), the tail tube protein of phage λ. This domain has been predicted through sequence similarity to be a member of the bacterial Ig-like domain 2 (Big_2) family, which is composed of more than 1300 phage and bacterial sequences. Using trypsin proteolysis, we have delineated the boundaries of gpVC and have shown that its removal reduces the biological activity of gpV by 100-fold; thus providing a definitive demonstration of a functional role for this domain. Determination of the solution structure of gpVC by NMR spectroscopy showed that it adopts a canonical Ig-like fold of the I-set class. This represents the first structure of a phage-encoded Ig-like domain and only the second structure of a Big_2 domain. Structural and sequence comparisons indicate that the gpVC structure is more representative of both the phage-encoded Big_2 domains and Big_2 domains in general than the other available Big_2 structure. Bioinformatics analyses have identified two conserved clusters of residues on the surface of gpVC that may be important in mediating the function of this domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号