首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude oil consists of a large number of hydrocarbons with different susceptibility to microbial degradation. The influence of hydrocarbon structure and molecular weight on hydrocarbon biodegradation under anaerobic conditions is not fully explored. In this study oxygen, nitrate and sulphate served as terminal electron acceptors (TEAs) for the microbial degradation of a paraffin-rich crude oil in a freshly contaminated soil. During 185 days of incubation, alkanes from n-C11 to n-C39, three n- to iso-alkane ratios commonly used as weathering indicators and the unresolved complex mixture (UCM) were quantified and statistically analyzed. The use of different TEAs for hydrocarbon degradation resulted in dissimilar degradative patterns for n- and iso-alkanes. While n-alkane biodegradation followed well-established patterns under aerobic conditions, lower molecular weight alkanes were found to be more recalcitrant than mid- to high-molecular weight alkanes under nitrate-reducing conditions. Biodegradation with sulphate as the TEA was most pronounced for long-chain (n-C32 to n-C39) alkanes. The observation of increasing ratios of n-C17 to pristane and of n-C18 to phytane provides first evidence of the preferential degradation of branched over normal alkanes under sulphate reducing conditions. The formation of distinctly different n- and iso-alkane biodegradation fingerprints under different electron accepting conditions may be used to assess the occurrence of specific degradation processes at a contaminated site. The use of n- to iso-alkane ratios for this purpose may require adjustment if applied for anaerobic sites.  相似文献   

2.
Possible alterations in the distribution and composition of total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethyl benzene, and xylene isomers (BTEX) in the released oil at Idu-Ekpeye in Niger Delta (Nigeria) were studied within two seasonal variations of two months and six months, with a view to assessing the level of attenuation of these hydrocarbons in impacted soils. Although there were significant contaminations in the kerosene range (n-C10-n-C14) two months after, especially of the n-C12 and n-C13 fractions, the complete disappearance of the n-C8 to n-C23 hydrocarbons, including the acyclic isoprenoids (pristane and phytane), and the reduced amounts of PAHs, and BTEX, six months after, provided substantial evidence of attenuation as indicated in the reduction in total hydrocarbon content (THC) from 61.17 to 42.86%. Soil physicochemical properties such as pH, moisture content, heavy metal, TOC, and TOM, all provided corroborative evidence of hydrocarbon attenuation. The pristane/phytane ratio of the spill samples suggests that the spilled oil was genetically oxic.  相似文献   

3.
The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems.  相似文献   

4.
Evaporite accumulations produced by artesian waters in the arid zones of southern Tunisia led to the formation of subrounded, gypsiferous mounds consisting of irregular alternations of mineral precipitates and aeolian sand. The joint occurrence of gypsum crusts and plant colonization determined the stabilization of their top surface. Careful examination of the pigmented (green-brown) crusts revealed endolithic microbial communities just below the surface. In previous optical and scanning electron microscope studies cyanobacteria were the dominant component of these communities. Molecular diversity studies based on small subunit ribosomal RNA (SSU rRNA) gene analysis revealed that Flavobacteria, Actinobacteria, Deinococcales, Alpha- and Gamma- Proteobacteria are also important components of the microbial assemblage. Their pigment analyses, determined by high performance liquid chromatography (HPLC), detected the presence of carotenoids and chlorophyll (chl) a and b. Microbial communities that produce pigmentation and display an endolithic lifestyle typify the extreme environments as those found in arid/semiarid and hot desert regions.  相似文献   

5.
The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems.  相似文献   

6.
Biodeterioration of archaeological sites and historic buildings is a major concern for conservators, archaeologists, and scientists involved in preservation of the world's cultural heritage. The Maya archaeological sites in southern Mexico, some of the most important cultural artifacts in the Western Hemisphere, are constructed of limestone. High temperature and humidity have resulted in substantial microbial growth on stone surfaces at many of the sites. Despite the porous natureof limestone and the common occurrence of endolithic microorganisms in many habitats, little is known about the microbial flora living inside the stone. We found a large endolithic bacterial community in limestone from the interior of the Maya archaeological site Ek' Balam. Analysis of 16S rDNA clones demonstrated disparate communities (endolithic: >80% Actinobacteria, Acidobacteria, and Low GC Firmicutes; epilithic: >50% Proteobacteria). The presence of differing epilithic and endolithic bacterial communities may be a significant factor for conservation of stone cultural heritage materials and quantitative prediction of carbonate weathering.  相似文献   

7.
The health and functioning of reef‐building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO2 reef (avg. pCO2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro‐organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen‐fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA.  相似文献   

8.
The spatial distribution of communities was examined in estuarine mud flat sediments by the biochemical analysis of the lipids and lipid components extracted from the sediments. Total phospholipid was used as a measure of total biomass, and fatty acids were used as indicators of community composition. Comparisons were made among 2- by 2-m (location) and 0.2- by 0.2-m (cluster) sampling plots by using a nested analysis of variance to design an optimal sampling strategy to define the microbial content of a large, relatively homogenous area. At two of the three stations, a 2- by 2-m plot was representative of the station, but 0.2- by 0.2-m areas were in no case representative of the station. The biomass measured by the extractable phospholipid and the total lipid palmitic acid showed excellent correlation with the fatty acid “signatures” characteristic of bacteria, but showed a lower correlation with the long-chain polyenoic fatty acids characteristic of the microfauna.  相似文献   

9.
High molecular weight lipids were isolated from Chlorella emersonii, Scenedesmus communis and Tetraedron minimum, thin trilaminar outer wall (TLS)-containing freshwater microalgae producing an insoluble non-hydrolysable biopolymer (i.e. algaenan). Molecular weight determination by gel permeation chromatography indicated that their molecular weights range from ca. 400 to 2000 Da. Flash pyrolysis with in situ methylation using tetramethylammonium hydroxide (TMAH) and alkaline hydrolysis showed that the high molecular weight lipids isolated from C. emersonii and S. communis are mainly composed of saturated n-C26 and n-C28 fatty acids and alcohols and of saturated n-C30 and n-C32 alpha,omega-diols and omega-hydroxy acids. In contrast the high molecular weight lipids isolated from T. minimum are predominantly composed of long-chain fatty acids and omega-hydroxy acids. Aromatic moieties were also identified in small amounts in the thermochemolysate and in the hydrolysate. Chemical structural models containing long-chain mono- and polyesters were proposed for the high molecular weight lipids isolated from the three microalgae in agreement with analytical and spectroscopic data. Structural similarity between the outer cell wall of these microalgae and the cuticular membrane of higher plants is suggested.  相似文献   

10.
In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.  相似文献   

11.
方康  徐国策  李鹏  王斌  陈新  马天文  魏全  马凌 《生态学报》2023,43(13):5571-5580
沉积物是河流生态系统中氮磷等物质循环的重要场所,而微生物是河流生态系统的重要组成部分,探究沉积物中微生物群落碳源利用特征和功能多样性对于河流生态环境保护具有重要意义。利用Biolog Eco微平板法、基于主成分分析、冗余分析阐明了大理河流域沉积物中微生物群落碳源利用强度和功能多样性变化特征及其影响因素。结果表明:(1)从流域上游到流域下游,沉积物中微生物碳源利用强度逐渐降低,与上游相比,支流、中游、下游沉积物中微生物碳源利用强度分别降低了13.4%、30.5%、30.7%。(2)沉积物中微生物群落功能多样性存在差异,沉积物中微生物群落功能多样性(Shannon-Wiener多样性指数)表现为上游 > 支流 > 中游 > 下游,常见物种优势度(Simpson多样性指数)则表现为下游 > 支流 > 中游 > 上游。(3)与微生物代谢活动相关性较高碳源为糖类,其次是氨基酸类,聚合物类、羧酸类、胺类、酚酸类与微生物代谢活动相关性较低。(4)沉积物中全氮、氨氮、硝氮、有机碳含量是影响微生物群落功能多样性和碳源利用特征差异的主要因素。流域沉积物中合适的碳、氮水平对维持河流水生态健康具有重要的意义。  相似文献   

12.
An n-hexane extract of fresh, mature leaves of Argemone mexicana (Papaveraceae), containing thin-layer epicuticular waxes, has been analysed for the first time by TLC, IR and GLC using standard hydrocarbons. Seventeen long-chain alkanes (n-C18 to n-C34) were identified and quantified. Nonacosane (n-C29) was established as the n-alkane with the highest amount, whilst octadecane (n-C19) was the least abundant component of the extracted wax fraction. The carbon preference index (CPI) calculated for the hydrocarbon sample with the chain lengths between C18 and C34 was 1.2469, showing an odd to even carbon number predominance.  相似文献   

13.
Microbial communities in marine hydrothermal sediments (0 to 30 cm deep) in an inlet of Kodakara-Jima Island, Kagoshima, Japan, were studied with reference to environmental factors, especially the presence of amino acids. The study area was shallow, and the sea floor was covered with sand through which hot volcanic gas bubbled and geothermally heated water seeped out. The total bacterial density increased with depth in the sediments in parallel with a rise in the ambient temperature (80(deg)C at the surface and 104(deg)C at a depth of 30 cm in the sediments). As estimated by most-probable-number studies, hyperthermophilic sulfur-dependent heterotrophs growing at 90(deg)C dominated the microbial community (3 x 10(sup7) cells (middot) g of sediment(sup-1) at a depth of 30 cm in the sediments), followed in abundance by hyperthermophilic sulfur-dependent facultative autotrophs (3.3 x 10(sup2) cells (middot) g of sediment(sup-1)). The cooler sandy or rocky floor surrounding the hot spots was covered with white bacterial mats which consisted of large Beggiatoa-like filaments. Both the total organic carbon content, most of which was particulate (75% in the surface sediments), and the amino acid concentration in void seawater in the sediments decreased with depth. Amino acids, both hydrolyzable and free, constituted approximately 23% of the dissolved organic carbon in the surface sediments. These results indicate that a lower amino acid concentration is probably due to consumption by dense populations of hyperthermophilic sulfur-dependent heterotrophs, which require amino acids for their growth and thus create a gradient of amino acid concentration in the sediments. The role of primary producers, which supply essential amino acids to sustain this microbial community, is also discussed.  相似文献   

14.
Antarctic endolithic microecosystems harbour distinct biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, leading to complex mineral-microbe interactions. Hence, the microhabitats and microenvironments of these microecosystems are not only determined by the physicochemical features of the lithic substrate, but are also conditioned by the biological components of these biofilms. The Antarctic biofilms analysed in this study are characterized by the presence of extracellular polymer substances and acid microenvironments in the proximity of the cells; cyanobacteria appearing as key components. On ultrastructural analysis, these endolithic cyanobacteria showed differences in sheath organization, probably related to their spatial position in the lithic substrate. It is proposed that in this type of ecosystem, biofilm structure could favour the formation of microsites with specific physicochemical conditions appropriate for the survival of microbial communities in this extreme environment.  相似文献   

15.
The endolithic environment is a ubiquitous microbial habitat for microorganisms, such as lichens, Cyanobacteria and fungi, and it provides mineral nutrients and growth surfaces. In extremely environments, such as hot and cold desert, endolithic communities are often the main form of life. More recently, endolithic microbial communities have been observed inhabiting a variety of rock types ranging from hard granite to porous rocks such as basalt, dolomite, limestone, sandstone and granites. Regardless of geographic location and rock type, each of these habitats is characterized by a subsurface microclimate that prevents endolithic microorganisms growth. Photosynthesis-based endolithic microbial communities commonly inhabit the outer millimeters to centimeters of rocks exposed to the surface. The ability to fix carbon dioxide and in some cases atmospheric dinitrogen, gives the Cyanobacteria a clear competitive advantage over heterotrophic bacteria, so it is been called the main primary producer. Light quality and intensity appear to be the main determinant of the maximum depth to which growth occurs in endolithic phototrophic communities. Valleys of Fantastic Rocks in Bole is close to Alashankou Port of Xinjiang which belongs to extreme continental climate. In order to investigate the structure, composition and diversity of endolithic bacterial community in exposed granitic porphyry in the Valleys of Fantastic Rocks, environmental DNA was directly extracted from granite rock, the 16S rRNA genes were amplified from the total DNA by PCR with bacterial-specific primers, and an endolithic bacterial clone library was constructed. Positive clones were randomly selected from the library and identified by Restriction Fragment Length Polymorphism (RFLP). The unique rRNA types clones were sequenced, analysised and then constructed phylogenetic tree. In total, 129 positive clones were screened and grouped into 46 operational taxonomic unites (OTUs). The clone coverage C value was 89.15%, indicating that most of the estimated endolithic bacterial diversity was sampled. BLAST analysis indicated that 46 OTUs were divided into seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Planctomycetes, Proteobacteria) and five unknown groups. Cyanobacteria (43%), especially the Gp I, form the functional basis for an endolithic bacteria community which contain a wide spectrum species of chemotrophic bacteria (33%) with mainly Actinobacteria, α-Proteobacteria, Acidobacteria. Additionally, most clones that derived from the endolithic bacteria clone library showed high similarity to the sequence deposited in GenBank database with 97%–99%. Besides, 35% of the clones showed less than 97% of sequence similarity, of which 12% sequences were affiliated to genus Rubrobacter. The results suggested that endolithic bacteria in Valleys of Fantastic Rocks in Xinjiang were highly diverse in species richness, and maybe have a diversity of potential novel species and lineages.  相似文献   

16.
脂肪酮分子在第四纪古土壤中的分布及其古气候意义   总被引:2,自引:0,他引:2  
广泛分布于地质体并受成土作用改造的α-正构脂肪酮在全球变化中的应用比较少见.远不如其他脂肪族化合物(如正构烷烃、脂肪酸等)那样普遍。文章以位于长江中下游红土和黄土交接地带的安徽宣城红土剖面和黄土高原的黄土剖面为研究对象.探讨α-正构脂肪酮的分布规律。α-正构脂肪酮在安徽宣城红土堆积序列中表现出与黄土高原黄土古土壤序列相似的变化规律.其碳优势指数(CPI值)不仅能区分出黄色亚砂土和红色亚粘土(古土壤),而且还能进一步体现出黄色土层和网纹红土层内部的旋回性变化。总的变化规律是,CPI值在古土壤层中表现出相对低值,如在宣城剖面古土壤层中变化于2.34.0之间;CPI值在宣城剖面黄土层中变化范围为2.47.1。成土作用增强,CPI值降低。α-正构脂肪酮这种规律性变化反映了成土过程中微生物对类脂物分子的改造强度,微生物不仅输入其本身的类脂物而且对高等植物不同类脂物(正构烷烃和脂肪酸)的改造都会使脂肪酮CPI值发生规律性变化。古土壤脂肪酮CPI值由此可以揭示受气候驱动的微生物作用,从而可以反映古气候的变化。  相似文献   

17.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

18.
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.  相似文献   

19.
Living microplanktonic blue-green alga Oscillatoria tenuis has been cultured in the laboratory as experimental material. The chemical analysis showed that the weight of liposoluble organic matter in O. tenuis was 5.8% of dry cell and the amounts of pigments were more over than those of aliphatic hydrocarbons. The distribution of hydrocarbons in O. tenuis indicated that a dominance of normal alkanes between n-C14 and n-C19, while a maximum at n-C17.The pigments, such as demagnesium chlorophyll a, β-carotene and an unknown orange-red pigment have been measured in the alcohol fraction and benzene fraction of liposoluble compounds on column chromatography. The research of liposoluble compounds, especially aliphatic hydrocarbons in blue-green algae is valuable to understand them as original materials for the organic matter found in ancient sediments.  相似文献   

20.
Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号