首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphokine secretion by in vivo-activated T cells was analyzed at the population and single-cell levels in lymphocytes from mice undergoing an acute allogeneic graft-vs-host reaction (GVHR). Three observations were made. First, constitutive lymphokine production by these cells was very low but could be dramatically up-regulated by TCR ligation. Thus, even when harvested at the peak of the GVHR, fewer than 0.1% of lymphocytes secreted detectable granulocyte-macrophage (GM)-CSF, IFN-gamma, or IL-3 in the first 24 h in vitro, and average production of these lymphokines in bulk cultures was less than 10(-5) U/cell. However, when cultured for 24 h with anti-CD3 antibody under conditions which activated less than 0.1% of normal cells, about 30% of GVHR T cells secreted GM-CSF, IFN-gamma, and/or IL-3, and average production levels were increased by 10(3)- to 10(4)-fold. Together with evidence that host alloantigen-induced lymphokine secretion was 10 to 100 times lower than the anti-CD3 response, these data suggest that physiologic lymphokine synthesis by most T cells is low (less than 10(-18) mol of IL-3 per cell) but can be raised above the threshold of detection by TCR cross-linking. Second, individual GVHR lymphocytes varied markedly in their total and relative production of different lymphokines in response to anti-CD3 stimulation, with some cells secreting IL-3 alone, some secreting IL-3 accompanied by other lymphokines (GM-CSF and/or IFN-gamma), and some secreting other lymphokines without detectable IL-3. Finally, both CD4+ and CD8+ T cells from GVHR mice responded to anti-CD3 antibody by secreting IL-3 and other lymphokines: purified CD4+ cells contained an average of 16% and CD8+ cells an average of 10% anti-CD3-inducible lymphokine-secreting cells. By contrast, only 2 to 3% of cells of either subset formed clones in cultures with host allogeneic cells and IL-2, suggesting that clonogenic alloreactive cells were a minority of the T cells activated in the GVHR.  相似文献   

2.
Human peripheral blood CD8+ T cells constitutively express a low level of IL-2-R beta chains which were shown in this study to be preferentially carried by the CD45R0+ subset. Such receptors can transduce signals for in vitro IL-2-induced cytolytic function and for the initiation of soluble anti-CD3 and IL-2-induced cell proliferation. Using these stimulation models, a comparison was made between the responsiveness of resting, small CD45R0+ and CD45RA+ subpopulations of CD8+ T cells, both of them being isolated by negative selection and rigorously depleted of monocytes and of IL-2-inducible non-MHC-restricted CTL. Strong proliferation was induced in CD8+/CD45R0+ cells in response to IL-2 and soluble anti-CD3 (each of these stimuli being by itself ineffective), while in contrast, CD8+/CD45RA+ cells manifested, in this system, little reactivity. Accordingly, no conversion to the CD45R0 phenotype occurred in single stained CD45RA+ T cells following their incubation with the stimuli. A similar restriction of reactivity to CD8+/CD45R0+ T cells was observed with respect to IL-2-induced targetable T cell cytotoxicity. The CTL activity induced by IL-2 alone occurred without cell division. In contrast, the additional increase in CTL activity occurring upon the synergistic actions of anti-CD3 mAb and IL-2 coincided with intense cell proliferation, with no generation of LAK activity. The inhibition exerted by anti-IL-2-R beta mAb in the cytolytic and the proliferative activities induced by these stimuli in resting CD8+/CD45R0+ T cells emphasizes the importance of constitutive IL-2-R beta chains in the biology of these cells.  相似文献   

3.
The CD45RA and CD45RO isoforms have been reported to define complementary subsets among CD4+ T cells: CD45RA CD4+ T cells are considered "virgin T cells" and CD45RO "primed T cells." We investigated the secretion of lymphokines by human CD4+ CD45RO and CD4+ CD45RA T helper cells after mitogen stimulation. CD45RA and CD45RO CD4+ T cells were isolated by negative immunoselection using magnetic beads. CD45RO cells, but not CD45RA cells, proliferate well in response to pokeweed mitogen (PWM) or insoluble anti-CD3. Both subpopulations produced interleukin (IL)-2, IL-6, and interferon (IFN)-gamma when stimulated with PWM for 1-4 days. Only Day 1 supernatants from CD45RO cells contained moderate amounts of IL-4. After 14 days of continuous culture and stimulation with PWM, the CD45RA subset had lost the expression of CD45RA and gained that of CD45RO. When long-term cultured CD45RA or CD45RO cells were treated with insoluble anti-CD3, they incorporated [3H]thymidine at similar levels, but only CD45RO cells secreted IL-4 and significantly increased their secretion of IFN-gamma. These data indicate that despite phenotype conversion, the two subpopulations maintain functional differences in the secretion of lymphokines, thus suggesting that circulating CD45RA and CD45RO cells may represent different lines of differentiation.  相似文献   

4.
The immunoregulatory functions of human T4 cell subpopulations defined by mAb to the CD45R molecule (2H4) were examined. Both CD45R- and CD45R+ T4 cells that had been treated with mitomycin C (CD45R- and CD45R+ T4-mito) provided help for the generation of Ig-secreting cells (ISC) in cultures stimulated by PWM or by immobilized mAb to CD3 (64.1). IL-2 enhanced the generation of ISC in PWM-stimulated cultures and in anti-CD3-stimulated cultures containing CD45R+ T4-mito. The generation of ISC was maximal in cultures containing anti-CD3-activated CD45R- T4-mito and was not increased by IL-2. By contrast, CD45R+ T4 cells that had not been treated with mitomycin C suppressed B cell responses in cultures stimulated with PWM or anti-CD3, whereas CD45R- T4 cells suppressed the generation of ISC only in cultures stimulated with anti-CD3. IL-2 enhanced suppression by anti-CD3, but not PWM, activated CD45R- T4 cells. Suppression by CD45R+ T4 cells was maximal and not increased by IL-2. CD45R+ T4-mito were more effective suppressor-inducers in PWM-stimulated cultures, promoting the differentiation of suppressor-effector cells from CD8+ T cells. However, both CD45R+ and CD45R- T4-mito exerted comparable suppressor-inducer function in anti-CD3-stimulated cultures. Moreover, in anti-CD3-stimulated cultures, T8 cells could function as both suppressor-effector cells and suppressor-inducer cells. One of the functions of suppressor-inducer cells in this system appeared to involve the production of IL-2. Thus, the addition of IL-2 facilitated the induction of suppressor-effector T8 cells by CD45R- T4-mito in PWM-stimulated cultures. Although IL-2 production by the T cell subsets varied widely depending on the nature of the stimulus, these differences could not entirely explain their capacity to function as helper cells, suppressor-effector cells or suppressor-inducer cells. These results indicate that both CD45R+ and CD45R- T4 cells can help or suppress B cell responses, as well as induce suppressor-effector T8 cells. Moreover, suppressor-inducer function of T cells is not limited to the T4 cell population, but rather can also be accomplished by T8 cells. The results indicate that both T4 cell subsets and T8 cells exert multiple regulatory effects on human B cell function, with the nature of the activating stimulus playing a major role in determining the functional capacity of various T cell subsets.  相似文献   

5.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

6.
We describe a limiting dilution (LD) culture system in which cell sorter-purified CD4+ (and CD8+) peripheral blood T cells are cocultured with irradiated, anti-CD3 mab-producing OKT3 hybridoma cells. Under these conditions, one out of 2-3 CD4+ (and CD8+) T cells is induced to clonal proliferation. In striking contrast to previously described LD culture systems, every growing CD4+ cell clone displayed cytotoxic activity when tested in a lectin-facilitated 51Cr release assay against P815 target cells. This contrasts with the development of cytotoxic CD4+ T cells in alloantigen-stimulated LD cultures, where only one out of 15-20 proliferating CD4+ cells killed P815 in the presence of PHA, and one out of 300-500 proliferating CD4+ cells displayed alloantigen-specific cytotoxic activity. Furthermore, we have established antigen-specific proliferating CD4+ T cell clones which do not exert antigen-specific cytotoxicity but can be cytotoxic when crosslinked to target cells via lectin or monoclonal antibody (anti-CD3, anti-TCR). Our results show that a previously unrecognized large fraction (at least 30-50%) of all peripheral blood CD4+ T cells can give rise to cytotoxic effector cells. The mode of CD4+ T cell activation (OKT3 hybridoma versus alloantigen) thus determines whether the intrinsic cytotoxic capacity of CD4+ T cells is functionally activated or not.  相似文献   

7.
CD8+ T cells can be primed in vitro to produce IL-4.   总被引:19,自引:0,他引:19  
IL-4 production by T lymphocytes from naive mice in response to stimulation by plate-bound anti-CD3 is concentrated among CD4+ T cells. In vitro stimulation of lymph node T cells with anti-CD3 plus IL-2 and IL-4 strikingly increases the frequency of cells that produce IL-4 in response to subsequent stimulation with anti-CD3 plus IL-2. Separation of these primed cell populations into CD4+ and CD8+ T cell by cell sorting reveals that the frequency of IL-4-producing cells in both population is similar. Verification that CD8+ T cells produce IL-4 is provided by the capacity of anti-IL-4 mAb to inhibit the response of the indicator cell line to the growth factor produced by the primed cells and by detection of IL-4 by an IL-4-specific ELISA. The in vitro "priming" of CD8+ T cells to produce IL-4 is not dependent on the presence of CD4+ T cells because highly purified CD8+ T cells can be stimulated to develop into cells capable of producing IL-4 by culture with plate-bound anti-CD3 plus IL-2 and IL-4.  相似文献   

8.
Triggering of the CD3:TCR complex by optimal concentrations of anti-CD3, anti-TCR beta-chain, and allogeneic stimulator cells induced dramatically higher levels (fivefold for anti-CD3, greater than 10-fold for anti-TCR beta-chain, 84-fold for alloantigen) of IL-2 production in spleen CD4+8- T cells than their thymic counterparts, despite comparable levels of CD3 and TCR beta-chain expression. The nature of the reduced IL-2 production was examined by analysis of anti-CD3-induced IL-2 production at the single cell level. The frequency of IL-2-producing cells in spleen CD4+8- T cells (40.0%) was approximately threefold that of thymus CD4+8- T cells (14.5%). Furthermore, the average IL-2 levels among positive IL-2 producers was also approximately threefold higher in spleen CD4+8- T cells than their thymic counterparts. Adoptive transfer of purified Thy-1.2+ CD4+8- T cells into Thy-1.1-congenic hosts provided a physiologic and histocompatible system that enabled identification of transferred donor (Thy-1.2+) among a sea of host (Thy-1.2-) CD4+ T cells, whose immune function with respect to IL-2 inducibility was examined after isolation by electronic cell sorting. Donor CD4+ T cells thus isolated from host spleen shortly (1 day) after i.v. transfer of thymus CD4+8- T cells were similar to freshly isolated thymus CD4+8- T cells in that they both produced little IL-2 in response to anti-CD3. However, by day 3 post-transfer, IL-2 production by donor CD4+8- T cells had more than doubled and by day 8, they produced IL-2 levels comparable to those of host spleen CD4+8- T cells. A similar acquisition of high level IL-2 inducibility in thymus CD4+8- T cells upon i.v. transfer into Thy-1.1-congenic hosts was also observed using allogeneic cells as the stimulus of IL-2 production. When thymus CD4+8- T cells were intra-thymically transferred into Thy-1.1-congenic hosts, those donor cells that emigrated to the periphery became high IL-2 producers in a time-dependent manner, whereas those that remained inside the thymus showed no signs of up-regulation in IL-2 inducibility. Intrathymic transfer of CD4-8- thymocytes revealed that the most recent thymic emigrant CD4+8- T cells contained few IL-2-producing cells and were not functionally mature with respect to high level IL-2 inducibility.  相似文献   

9.
The effect of transforming growth factor-beta 1 (TGF-beta) on activation-induced CD8+ T cell cytotoxicity and gene expression was investigated. TGF-beta was demonstrated to inhibit pore-forming protein (PFP) mRNA expression and total benzoyloxycarbonyl-L-lysine thiobenzyl ester esterase activity in CD8+ T cells cultured with IL-2 and OKT3 mAb for 6 to 18 days. Consistently, in the absence or presence of TGF-beta, the PFP mRNA expression and lymphokine-activated killer (LAK) activity of CD8+ T cells were closely correlated. The inhibitory effects of TGF-beta on both CD8+ T cell PFP mRNA expression and LAK activity were reversible by removal of TGF-beta from the culture. Expression of lymphokines, adhesion/recognition molecules, and activated p55 IL-2R, previously implicated in the lytic mechanism of cytotoxic lymphocytes, either was not detectable or did not correlate with TGF-beta inhibition of LAK activity. In addition, independently of effector/target cell binding, the lectin- or heteroconjugated antibody-dependent cellular cytotoxicity of IL-2/OKT3 mAb-activated CD8+ T cells was inhibited by preculture with TGF-beta. TGF-beta also inhibited the rapid activation-induced expression of PFP mRNA and cytotoxic potential in resting T cells, thereby indicating that the effect of TGF-beta was independent of T cell proliferation. TGF-beta inhibition of CD8+ T cell PFP mRNA expression and cytotoxic potential was TGF-beta dose dependent; however, a variety of activation stimuli (including IL-2, IL-6, and OKT3 mAb) were all similarly inhibited by TGF-beta. Therefore, TGF-beta may be an important general regulator of CD8+ T cell cytotoxic function, in particular by suppressing expression of PFP, a major cytolytic protein implicated in the lytic function of cytotoxic lymphocytes.  相似文献   

10.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

11.
We have studied the properties of several developmentally defined subpopulations of CD4+ T cells from normal animals which can be stimulated to secrete lymphokines. We find that the Th cells responsible for direct secretion of lymphokines after stimulation are from a resting, very long lived subpopulation of CD4+ T cells which persists for over 25 wk after adult thymectomy. These T cells are depleted by in vivo administration of antithymocyte serum and they are enriched among T cells which express high levels of Pgp-1. This phenotype suggests that the T cells responsible are most likely memory T cells which have resulted from antigen exposure in vivo. T cells in this subset secrete predominantly IL-2 with small quantities of IL-3, granulocyte/macrophage CSF, and IFN-gamma. In contrast, the CD4+ T cells which require in vitro culture and restimulation before they develop into an effector population with the ability to secrete lymphokines after restimulation, differ dramatically by most of these criteria. The precursors we study are resting Th cells which are considerably shorter lived after adult thymectomy (5 to 10 wk) and resistant to the same doses of antithymocyte serum which deplete the putative memory population. We hypothesize that this precursor population represents naive helper cells which have not yet encountered Ag. The effectors derived from such precursors can be stimulated to secrete high levels of both Th cell types 1 and 2 lymphokines (IFN-gamma, IL-4, IL-5, granulocyte/macrophage CSF, and IL-3). Generation of effectors requires proliferation and differentiation events which occur during a mandatory culture with lymphokines and antigen presenting cells for 3 to 4 days. We discuss the striking phenotypic and functional differences among these subpopulations of helper cells--the precursor population and the two types--memory and cultured effector Th which secrete lymphokines. We also discuss the relationship of these populations to CD4+ T cell subsets defined by other studies of patterns of lymphokine secretion and by cell surface phenotype.  相似文献   

12.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

13.
Although CD8+ IL-2Rbeta (CD122)+ T cells with intermediate TCR reportedly develop extrathymically, their functions still remain largely unknown. In the present study, we characterized the function of CD8+ CD122+ T cells with intermediate TCR of C57BL/6 mice. The proportion of CD8+ CD122+ T cells in splenocytes gradually increased with age, whereas CD8+ IL-2Rbeta-negative or -low (CD122-) T cells conversely decreased. The IFN-gamma production from splenocytes stimulated with immobilized anti-CD3 Ab in vitro increased with age, whereas the IL-4 production decreased. When sorted CD8+ CD122+ T cells were stimulated in vitro by the anti-CD3 Ab, they promptly produced a much larger amount of IFN-gamma than did CD8+ CD122- T cells or CD4+ T cells, whereas only CD4+ T cells produced IL-4. The depletion of CD8+ CD122+ T cells from whole splenocytes greatly decreased the CD3-stimulated IFN-gamma production and increased the IL-4 production, whereas the addition of sorted CD8+ CD122+ T cells to CD8+ CD122+ T cell-depleted splenocytes restored the IFN-gamma production and partially decreased IL-4 production. It is of interest that CD8+ CD122+ T cells stimulated CD4+ T cells to produce IFN-gamma. The CD3-stimulated IFN-gamma production from each T cell subset was augmented by macrophages. Furthermore, CD3-stimulated CD8+ CD122+ T cells produced an even greater amount of IFN-gamma than did liver NK1.1+ T cells and also showed antitumor cytotoxicity. These results show that CD8+ CD122+ T cells may thus be an important source of early IFN-gamma production and are suggested to be involved in the immunological changes with aging.  相似文献   

14.
CD8 (T8) cells are capable of both suppression and cytotoxicity. However, we have found that the activation of CD8 cytotoxic cells has a preferential requirement for a different CD4 (T4) subset from that previously reported for the activation of CD8 suppressor cells. We have recently characterized two monoclonal antibodies which subdivide CD4 cells into inducers of help for antibody production (CD4+ 4B4+) and inducers of CD8 mediated suppression (CD4+2H4+). We now report that CD4+4B4+2H4- cells also preferentially induce CD8-mediated cytotoxicity. Human peripheral blood T cells were fractionated into CD8, CD4, CD4+2H4+, and CD4+2H4- populations by both the adherence to antibody-coated plates and the fluorescence-activated cell sorter. The cells were cultured 6 days with irradiated allogeneic non-T cells and a cytotoxicity assay was then performed using cryopreserved non-T cells as targets. It was found that the combination of CD4+2H4- cells and CD8 cells resulted in greater cytotoxicity than either CD4 + CD8, or CD4+2H4+ + CD8. The combination of CD4+2H4+ cells with CD8 cells resulted in minimal cytotoxicity, which was similar to that generated by CD8 cells alone. These results were confirmed using anti-4B4 to positively select the reciprocal CD4 subset. Furthermore, the cytotoxicity induced by CD4+2H4- cells was alloantigen specific and Class I major histocompatibility complex restricted. As both CD4+2H4+ and CD4+2H4- cells proliferate equally well to alloantigen and produce similar levels of interleukin 2 (IL-2), it is likely that the generation of CD8 cytotoxic cells requires a signal in addition to IL-2.  相似文献   

15.
This study examines the potential mechanism(s) responsible for the defective clonability of CD8+ T lymphocytes in patients with AIDS. By the combined use of one- and two-color fluorescence cytofluorometry we have shown an increase in the number of circulating DR+ cells due to the expression of DR on a relatively large proportion of T lymphocytes (one-third of CD3+ cells), the majority of them belonging to the CD8+ subset. In addition, the majority of CD8+DR+ cells in AIDS patients did not express CD25 Ag (the receptor for IL-2), a surface marker generally expressed on normal activated T lymphocytes. Sorted CD8+DR+ and CD8+DR- cell populations were analyzed comparatively for their ability to proliferate in response to different stimuli, including anti-CD3, anti-CD2, alone or in combination with anti-CD28 mAb and mitogens such as PHA, alone or in combination with PMA. We have demonstrated that CD8+DR+ cells were severely defective in their proliferative response to triggering via these major pathways of T cell activation even when an exogenous source of IL-2 or IL-4 was added to the microcultures 24 h after initiating the cultures. In contrast, CD8+DR- cells showed a significant proliferation in response to the different stimuli and the proliferative response was strongly enhanced by the addition of IL-2 or IL-4. At the end of the stimulation period CD8+DR+ and CD8+DR- proliferating populations were analyzed for CD25 Ag expression. Only 1 to 10% of CD8+DR+ cells expressed CD25 antigen compared with 40 to 50% of CD8+DR- cells. The proliferative defect of CD8+DR+ cells was further confirmed in experiments performed at the clonal level. The analysis of the frequency of proliferating T lymphocyte-precursors in both CD8+DR+ and CD8+DR- subsets showed that the defective clonogenic potential of CD8+ cells in AIDS patients could be in large part ascribed to CD8+DR+ cells. Five percent of CD8+DR+ cells showed a clonogenic potential compared to the 25% of CD8+DR- cells. Finally, we analyzed the surface expression of VLA-2 Ag, a marker of a chronic state of T cell activation, on circulating T lymphocytes. We have shown that a large proportion of CD3+DR+CD25- cells (50 to 80% in the different patients with AIDS analyzed) expressed VLA-2 Ag.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We investigated the effects of IL-18 on the development of CD8+ effector T cells in DBA/2 anti-BDF1 whole spleen cell MLC and compared the results with those of IL-12. Addition of IL-18 to the MLC resulted in a twofold increase in CD8/CD4 ratios compared with the control cultures when cells were expanded in IL-2-containing medium following MLC. Purified CD8+ T cells recovered from the IL-18-stimulated MLC produced 20- to 30-fold more IFN-gamma after secondary stimulation with C57BL/6 spleen cells or anti-CD3 mAb, and exhibited strong allospecific CTL activity. Neither IL-18 nor IL-18-supplemented culture supernatants from DBA/2 anti-BDF1 MLC induced type I CD8+ effector T cells when purified CD8+ T cells were used as responder cells in primary MLC. Furthermore, CD4+ T cell depletion from the responder cells abrogated the IL-18-induced increase in secondary IFN-gamma production by CD8+ T cells, suggesting that IL-18-induced type I effector CD8+ T cell development was CD4+ T cell dependent. In marked contrast, adding IL-12 to primary MLC decreased CD8/CD4 ratios by 50% and suppressed secondary IFN-gamma production and CTL activity by CD8+ T cells regardless of concentration, whereas Th1 development was promoted by IL-12. Moreover, both IL-12 and IL-18 efficiently induced type I CD8+ effector T cells in C57BL/6 anti-BDF1 MLC. These findings show that IL-18 plays an important role in the generation of type I CD8+ effector T cells, and further suggest that functional maturation of CD8+ T cells is differentially regulated by IL-18 and IL-12.  相似文献   

17.
PGE2 is a potent inflammatory mediator with profound immune regulatory actions. The present study examined the effects of PGE2 on the activation/proliferation of CD4+ T cells using 37 cloned CD4+ T cell lines. Ten T cell clones sensitive to PGE2 and 10 T cell clones resistant to PGE2, as measured by proliferation in response to anti-CD3 Ab, were selected for comparison. It was found that the PGE2-sensitive T cells were characterized by low production (<200 pg/ml) of both IL-2 and IL-4, while PGE2-resistant T cells secreted high levels (>1000 pg/ml) of IL-2, IL-4, or both. The roles of IL-2 and IL-4 were confirmed by the finding that addition of exogenous lymphokines could restore PGE2-inhibited proliferation, and PGE2-resistant Th1-, Th2-, and Th0-like clones became PGE2 sensitive when IL-2, IL-4, or both were removed using Abs specific for the respective lymphokines. In addition, we showed that the CD45RA expression in PGE2-sensitive T cells was significantly lower than that in PGE2-resistant cells (mean intensity, 1.2 +/- 0.6 vs 7.8 +/- 5.7; p = 0.001). In contrast, CD45RO expression in PGE2-sensitive T cells was significantly higher that that in PGE2-resistant cells (mean intensity, 55.7 +/- 15.1 vs 33.4 +/- 12.9; p = 0.02). In summary, PGE2 predominantly suppressed CD45RA-RO+ CD4+ T cells with low secretion of both IL-2 and IL-4.  相似文献   

18.
IL-1 as a co-factor for lymphokine-secreting CD8+ murine T cells   总被引:1,自引:0,他引:1  
Immunologically important among the known biologic activities of IL-1 is its ability to function as a co-factor for responses mediated by lymphokine secreting CD4+ Th cells. In contrast to its known effects in CD4+ T cell responses, IL-1 is not known to play a role in CD8+ T cell responses. In the present study, we have assessed the ability of murine recombinant IL-1 to function as a co-factor for stimulating CD8+ T cells to secrete lymphokines such as IL-2. We found that, in conjunction with either Ag or mitogen, IL-1 is able to stimulate lymphokine-secreting CD8+ T cells. Furthermore, we found that, as a consequence of its stimulation of lymphokine-secreting CD8+ T cells, IL-1 is able to reconstitute MHC class I allospecific cytolytic T lymphocyte responses by cell populations depleted of both accessory cells and CD4+ T cells. These results demonstrate that the biologic activity of IL-1 is not restricted to CD4+ cell responses, and suggests that IL-1 can function as a co-factor for the stimulation of lymphokine-secreting Th cells regardless of their CD4/CD8 phenotype. If IL1 acts directly on lymphokine-secreting T cells or on the APC with which they interact is not yet certain.  相似文献   

19.
The alphaEbeta7 integrin CD103 may direct lymphocytes to its ligand E-cadherin. CD103 is expressed on T cells in lung and gut and on allograft-infiltrating T cells. Moreover, recent studies have documented expression of CD103 on CD4+ regulatory T cells. Approximately 4% of circulating CD8+ T cells bear the CD103 molecule. In this study, we show that the absence or presence of CD103 was a stable trait when purified CD103- and CD103+ CD8+ T cell subsets were stimulated with a combination of CD3 and CD28 mAbs. In contrast, allostimulation induced CD103 expression on approximately 25% of purified CD103- CD8+ T cells. Expression of CD103 on alloreactive cells was found to be augmented by IL-4, IL-10, or TGF-beta and decreased by addition of IL-12 to MLCs. The alloantigen-induced CD103+ CD8+ T cell population appeared to be polyclonal and retained CD103 expression after restimulation. Markedly, in vitro-expanded CD103+ CD8+ T cells had low proliferative and cytotoxic capacity, yet produced considerable amounts of IL-10. Strikingly, they potently suppressed T cell proliferation in MLC via a cell-cell contact-dependent mechanism. Thus, human alloantigen-induced CD103+ CD8+ T cells possess functional features of regulatory T cells.  相似文献   

20.
Impaired clonal expansion in athymic nude CD8+CD4- T cells   总被引:3,自引:0,他引:3  
A comparative study of the phenotype and immune functions of highly purified CD8+CD4- T cells obtained from the spleen and thymus of normal mice and from the spleen of athymic nude mice was conducted. Of seven individual normal and nude mice examined, the range of V beta 8+ cells among CD8+ T cells was a heterogeneous 4.3 to 30.5% for athymic nude mice and a much more uniform spread from 14.7 to 18.5% for normal mice. In six of the seven nude mice examined, the fraction of V beta 8+ cells was below the lower limit of the V beta 8 distribution in normal mice. However, one of the seven nude mice contained nearly twice the percentage of normal V beta 8+ cells. A reduction in the density of V beta 8 as well as CD3 Ag expression was also observed in athymic CD8+CD4- cells although an Ly-6-linked Ag, B4B2 displayed a highly increased expression. Considering the battery of Ag analyzed in entirety, athymic CD8+CD4- T cells were clearly distinct from their "counterpart" CD8+CD4- T cells isolated from either thymus or spleen of normal (euthymic) mice. Anti-CD3-mediated triggering of the TCR:CD3 complex caused extensive clonal proliferation in cultures to which single responding CD8+ T cells had been deposited. Under identical conditions, however, anti-CD3 caused little, if any clonal expansion in CD8+ cells from athymic nude mice. Highly purified athymic CD8+CD4- cells produced readily detectable IL-2R expression and IL-2 synthesis and secretion upon stimulation by anti-CD3 and by Con A. Production of IL-2 by purified athymic CD8+CD4- cells was due to CD8+CD4- cells and not due to a minor population of contaminating CD8- cells as anti-CD8 + C treatment completely abrogated the ability of athymic CD8+CD4- cells to produce IL-2. Despite IL-2 production and IL-2R expression by athymic nude CD8+CD4- T cells in response to anti-CD3 and to Con A, an impaired proliferative response followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号