首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The analysis and prediction of non-canonical structural motifs in RNA is of great importance for an understanding of the function and design of RNA structures. A hierarchical method has been employed to generate a large variety of sterically possible conformations for a single-base adenine bulge structure in A -form DNA and RNA. A systematic conformational search was performed on the isolated bulge motif and neighboring nucleotides under the constraint to fit into a continuous helical structure. These substructures were recombined with double-stranded DNA or RNA. Energy minimization resulted in more than 300 distinct bulge conformations. Energetic evaluation using a solvation model based on the finite-difference Poisson-Boltzmann method identified three basic classes of low-energy structures. The three classes correspond to conformations with the bulge base stacked between flanking nucleotides (I), location of the bulge base in the minor groove (II) and conformations with a continuous stacking of the flanking helices and a looped out bulge base (III). For the looped out class, two subtypes (IIIa and IIIb) with different backbone geometries at the bulge site could be distinguished. The conformation of lowest calculated energy was a class I structure with backbone torsion angles close to those in standard A -form RNA. Conformations very close to the extra-helical looped out bulge structure determined by X-ray crystallography were also among the low-energy structures. In addition, topologies observed in other experimentally determined bulge structures have been found among low-energy conformers. The implicit solvent model was further tested by comparing an uridine and adenine bulge flanked by guanine:cytosine base-pairs, respectively. In agreement with the experimental observation, a looped out form was found as the energetically most favorable form for the uridine bulge and a stacked conformation in case of the adenine bulge. The inclusion of solvation effects especially electrostatic reaction field contributions turned out to be critically important in order to select realistic low-energy bulge structures from a large number of sterically possible conformations. The results indicate that the approach might be useful to model the three-dimensional structure of non-canonical motifs embedded in double-stranded RNA, in particular, to restrict the number of possible conformations to a manageable number of conformers with energies below a certain threshold.  相似文献   

2.
Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein.  相似文献   

3.
Extra unmatched nucleotides (single base bulges) are common structural motifs in folded RNA molecules and can participate in RNA-ligand binding and RNA tertiary structure formation. Often these processes are associated with conformational transitions in the bulge region such as flipping out of the bulge base from an intrahelical stacked toward a looped out state. Knowledge of the flexibility of bulge structures and energetics of conformational transitions is an important prerequisite to better understand the function of this RNA motif. Molecular dynamics simulations were performed on single uridine and adenosine bulge nucleotides at the center of eight basepair RNA molecules and indicated larger flexibility of the bulge bases compared to basepaired regions. The umbrella sampling method was applied to study the bulge base looping out process and accompanying conformational and free energy changes. Looping out toward the major groove resulted in partial disruption of adjacent basepairs and was found to be less favorable compared to looping out toward the minor groove. For both uridine and adenosine bulges, a positive free energy change for full looping out was obtained which was approximately 1.5 kcal mol-1 higher in the case of the adenosine compared to the uridine bulge system. The simulations also indicated stable partially looped out states with the bulge bases located in the RNA minor groove and forming base triples with 5'-neighboring basepairs. In the case of the uridine bulge this state was more stable than the intrahelical stacked bulge structure. Induced looping out toward the minor groove involved crossing of an energy barrier of approximately 3.5 kcal mol-1 before reaching the base triple state. A continuum solvent analysis of intermediate bulge states indicated that electrostatic interactions stabilize looped out and base triple states, whereas van der Waals interactions and nonpolar contributions favor the stacked bulge conformation.  相似文献   

4.
A systematic study of the conformational states of the dinucleotide diadenosine 5′,5′-pyrophosphate (AppA), an analog of the coenzyme NAD+, has been made using semi-empirical energy calculations. Taking low-energy mononucleotide structures as starting conformations, energy minimizations have been performed. The most stable structures exhibit stacking interactions between the adenine bases; there are many different stacked states of similar energy; their stability is derived from nonbonded interactions primarily between the bases but also from base–sugar interactions. The most common form of stacking in the most stable structures was found to be antiparallel A-A helix. These findings are consistent with the experimental data, which suggest that AppA adopts predominantly a stacked state in solution, and this state incorporates a variety of stacked conformations.  相似文献   

5.
6.
It has been argued that the stacking of adenyl groups in water must be driven primarily by electrostatic interactions, based upon NMR data showing stacking for two adenyl groups joined by a 3-atom linker but not for two naphthyl groups joined by the same linker. In contrast, theoretical work has suggested that adenine stacking is driven primarily by nonelectrostatic forces, and that electrostatic interactions actually produce a net repulsion between adenines stacking in water. The present study provides evidence that the experimental data for the 3-atom-linked bis-adenyl and bis-naphthyl compounds are consistent with the theory indicating that nonelectrostatic interactions drive adenine stacking. First, a theoretical conformational analysis is found to reproduce the observed ranking of the stacking tendencies of the compounds studied experimentally. A geometric analysis identifies two possible reasons, other than stronger electrostatic interactions, why the 3-atom-linked bis-adenyl compounds should stack more than the bis-naphthyl compounds. First, stacked naphthyl groups tend to lie further apart than stacked adenyl groups, based upon both quantum calculations and crystal structures. This may prevent the bis-naphthyl compound from stacking as extensively as the bis-adenyl compound. Second, geometric analysis shows that more stacked conformations are sterically accessible to the bis-adenyl compound than to the bis-naphthyl compound because the linker is attached to the sides of the adenyl groups, but to the ends of the naphthyl groups. Finally, ab initio quantum mechanics calculations and energy decompositions for relevant conformations of adenine and naphthalene dimers support the view that stacking in these compounds is driven primarily by nonelectrostatic interactions. The present analysis illustrates the importance of considering all aspects of a molecular system when interpreting experimental data, and the value of computer models as an adjunct to chemical intuition.  相似文献   

7.
Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from single-stranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by ~3 kcal mol(-1) (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.  相似文献   

8.
Mottamal M  Zhang J  Lazaridis T 《Proteins》2006,62(4):996-1009
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures.  相似文献   

9.
Structural features at extra thymidine bulge sites in DNA duplexes have been elucidated from a two-dimensional NMR analysis of through-bond and through-space connectivities in the otherwise self-complementary d(C-C-G-T-G-A-A-T-T-C-C-G-G) (GTG 13-mer) and d(C-C-G-G-A-A-T-T-C-T-C-G-G) (CTC 13-mer) duplexes in aqueous solution. These studies establish that the extra thymidine flanked by guanosines in the GTG 13-mer duplex is in a conformational equilibrium between looped out and stacked states. The looped-out state is favored at low temperature (0 degrees C), whereas the equilibrium shifts in favor of the stacked state at elevated temperatures (35 degrees C) prior to the onset of the duplex-strand transition. By contrast, the extra thymidine flanked by cytidines in the CTC 13-mer duplex is looped out independent of temperature in the duplex state. Our results demonstrate that temperature and flanking sequence modulate the equilibrium between looped-out and stacked conformations of single base thymidine bulges in DNA oligomer duplexes.  相似文献   

10.
J M Thornton  P M Bayley 《Biopolymers》1977,16(9):1971-1986
A study of the conformational states of the dinucleotide coenzyme NAD+ has been made using semiempirical energy calculations. Taking low-energy mononucleotide structures as starting conformations, energy minimizations have been performed. The lowest energy states are stacked structures, with interactions between the adenine and nicotinamide rings. Some structures show stabilization gained from electrostatic attractions between the positively charged nicotinamide and negatively charged phosphate oxygens. These predictions correlate well with the available experimental data.  相似文献   

11.
The interaction between one polychlorobiphenyl (3,3′,4,4′,-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Figure
Molecular orbital interaction diagram of stacked PCB77 and Adenine.  相似文献   

12.
M K Gilson  B Honig 《Proteins》1988,4(1):7-18
In this report we describe an accurate numerical method for calculating the total electrostatic energy of molecules of arbitrary shape and charge distribution, accounting for both Coulombic and solvent polarization terms. In addition to the solvation energies of individual molecules, the method can be used to calculate the electrostatic energy associated with conformational changes in proteins as well as changes in solvation energy that accompany the binding of charged substrates. The validity of the method is examined by calculating the hydration energies of acetate, methyl ammonium, ammonium, and methanol. The method is then used to study the relationship between the depth of a charge within a protein and its interaction with the solvent. Calculations of the relative electrostatic energies of crystal and misfolded conformations of Themiste dyscritum hemerythrin and the VL domain of an antibody are also presented. The results indicate that electrostatic charge-solvent interactions strongly favor the crystal structures. More generally, it is found that charge-solvent interactions, which are frequently neglected in protein structure analysis, can make large contributions to the total energy of a macromolecular system.  相似文献   

13.
M A Rosen  L Shapiro  D J Patel 《Biochemistry》1992,31(16):4015-4026
We have synthesized an oligodeoxynucleotide duplex, d(G-C-A-T-C-G-A-T-A-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-C-G), with a three-base bulge loop (A-T-A) at a central site in the first strand. Nuclear Overhauser experiments (NOESY) in H2O indicate that the GC base pairs flanking the bulge loop are intact between 0 and 25 degrees C. Nuclear Overhauser effects in both H2O and D2O indicate that all bases within the bulge loop are stacked into the helix. These unpaired bases retain an anti conformation about their glycosidic bonds as they stack within the duplex. The absence of normal sequential connectivities between the two cytosine residues flanking the bulge site on the opposite strand indicates a disruption in the geometry of this base step upon insertion of the bulged bases into the helix. This conformational perturbation is more akin to a shearing apart of the bases, which laterally separates the two halves of the molecule, rather than the "wedge" model often invoked for single-base bulges. Using molecular dynamics calculations, with both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes as restraints, we have determined the solution structure of an A-T-A bulge loop within a DNA duplex. The bulged bases are stacked among themselves and with the guanine bases on either side of the loop. All three of the bulged bases are displaced by 2-3 A into the major groove, increasing the solvent accessibility of these residues. The ATA-bulge duplex is significantly kinked at the site of the lesion, in agreement with previously reported electron microscopy and gel retardation studies on bulge-containing duplexes [Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 4833-4837; Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840]. Bending occurs in a direction away from the bulge-containing strand, and we find a significant twist difference of 84 degrees between the two base pairs flanking the bulge loop site. This value represents 58% of the twist difference for base pairs four steps apart in B-DNA. These results suggest a structural mechanism for the bending of DNA induced by unpaired bases, as well as accounting for the effect bulge loops may have on the secondary and tertiary structures of nucleic acids.  相似文献   

14.
The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy transfer measurements of single- and double-bulge DNA molecules.  相似文献   

15.
Cylindrical cell model Poisson-Boltzmann (P-B) calculations are used to evaluate the electrostatic contributions to the relative stability of various DNA conformations (A, B, C, Z, and single-stranded (ss) with charge spacings of 3.38 and 4.2 A) as a function of interhelix distance in a concentrated solution of divalent cations. The divalent ion concentration was set at 100 mM, to compare with our earlier reports of spectroscopic and calorimetric experiments, which demonstrate substantial disruption of B-DNA geometry. Monovalent cations neutralize the DNA phosphates in two ways, corresponding to different experimental situations: 1) There is no significant contribution to the ionic strength from the neutralizing cations, corresponding to DNA condensation from dilute solution and to osmotic stress experiments in which DNA segments are brought into close proximity to each other in the presence of a large excess of buffer. 2) The solution is uniformly concentrated in DNA, so that the neutralizing cations add significantly to those in the buffer at close DNA packing. In case 1), conformations with lower charge density (Z and ssDNA) have markedly lower electrostatic free energies than B-DNA as the DNA molecules approach closely, due largely to ionic entropy. If the divalent cations bind preferentially to single-stranded DNA or a distorted form of B-DNA, as is the case with transition metals, the base pairing and stacking free energies that stabilize the double helix against electrostatic denaturation may be overcome. Strong binding to the bases is favored by the high concentration of divalent cations at the DNA surface arising from the large negative surface potential; the surface concentration increases sharply as the interhelical distance decreases. In case 2), the concentration of neutralizing monovalent cations becomes very large and the electrostatic free energy difference between secondary structures becomes small as the interhelical spacing decreases. Such high ionic concentrations will be expected to modify the stability of DNA by changing water activity as well as by screening electrostatic interactions. This may be the root of the decreased thermal stability of DNA in the presence of high concentrations of magnesium ions.  相似文献   

16.
Kumar S  Nussinov R 《Proteins》2000,41(4):485-497
In solution proteins often exhibit backbone and side-chain flexibility. Yet electrostatic interactions in proteins are sensitive to motions. Hence, here we study the contribution of ion pairs toward protein stability in a range of conformers which sample the conformational space in solution. Specifically, we focus on the electrostatic contributions of ion pairs to the stability of each of the conformers in the NMR ensemble of the c-Myc-Max leucine zipper and to their average energy minimized structure. We compute the electrostatic contributions of inter- and intra-helical ion pairs and of an ion pair network. We find that the electrostatic contributions vary considerably among the 40 NMR conformers. Each ion pair, and the network, fluctuates between being stabilizing and being destabilizing. This fluctation reflects the variability in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other and with respect to other charged groups in the rest of the protein. Ion pair interactions in the c-Myc-Max leucine zipper in solution depend on the protein conformer which is analyzed. Hence, the overall stabilizing (or destabilizing) contribution of an ion pair is conformer population-dependent. This study indicates that free energy calculations performed using the continuum electrostatics methodology are sensitive to protein conformational details.  相似文献   

17.
In the preceding paper in this journal, we described the solution structure of the nitrous acid cross-linked dodecamer duplex [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined). The structure revealed that the cross-linked guanines form a nearly planar covalently linked 'G:G base pair', with the complementary partner cytidines flipped out of the helix. Here we explore the flanking sequence context effect on the structure of nitrous acid cross-links in [d(CG)]2 and the factors allowing the extrahelical cytidines to adopt such fixed positions in the minor groove. We have used NMR spectroscopy to determine the solution structure of a second cross-linked dodecamer duplex, [d(CGCTACGTAGCG)]2, which shows that the identity of the flanking base pairs significantly alters the stacking patterns and phosphate backbone conformations. The cross-linked guanines are now stacked well on adenines preceding the extrahelical cytidines, illustrating the importance of purine- purine base stacking. Observation of an imino proton resonance at 15.6 p.p.m. provides evidence for hydrogen bonding between the two cross-linked guanines. Preliminary structural studies on the cross-linked duplex [d(CGCGACGTCGCG)]2 show that the extrahelical cytidines are very mobile in this sequence context. We suggest that favorable van der Waals interactions between the cytidine and the adenine 2 bp away from the cross-link localize the cytidines in the previous cross-linked structures.  相似文献   

18.
Raman and Raman optical activity (ROA) spectra were collected for four RNA oligonucleotides based on the EMCV IRES Domain I to assess the contributions of helix, GNRA tetraloop, U·C mismatch base pair and pyrimidine-rich bulge structures to each. Both Raman and ROA spectra show overall similarities for all oligonucleotides, reflecting the presence of the same base paired helical regions and GNRA tetraloop in each. Specific bands are sensitive to the effect of the mismatch and asymmetric bulge on the structure of the RNA. Raman band changes are observed that reflect the structural contexts of adenine residues, disruption of A-form helical structure, and incorporation of pyrimidine bases in non-helical regions. The ROA spectra are also sensitive to conformational mobility of ribose sugars, and verify a decrease in A-type helix content upon introduction of the pyrimidine-rich bulge. Several Raman and ROA bands also clearly show cooperative effects between the mismatch and pyrimidine-rich bulge motifs on the structure of the RNA. The complementary nature of Raman and ROA spectra provides detailed and highly sensitive information about the local environments of bases, and secondary and tertiary structures, and has the potential to yield spectral signatures for a wide range of RNA structural motifs.  相似文献   

19.
Popenda L  Adamiak RW  Gdaniec Z 《Biochemistry》2008,47(18):5059-5067
The RNA single bulge motif is an unpaired residue within a strand of several complementary base pairs. To gain insight into structural changes induced by the presence of the adenosine bulge on RNA duplex, the solution structures of RNA duplex containing a single adenine bulge (5'-GCAGAAGAGCG-3'/5'-CGCUCUCUGC-3') and a reference duplex with all Watson-Crick base pairs (5'-GCAGAGAGCG-3'/5'-CGCUCUCUGC-3') have been determined by NMR spectroscopy. The reference duplex structure is a regular right-handed helix with all of the attributes of an A-type helix. In the bulged duplex, single adenine bulge stacks into the helix, and the bulge region forms a well-defined structure. Both structures were analyzed by the use of calculated helical parameters. Distortions induced by the accommodation of unpaired residue into the helical structure propagate over the entire structure and are manifested as the reduced base pairs inclination and x-displacement. Intrahelical position of bulged adenine A5 is stabilized by efficient stacking with 5'-neighboring residues G4.  相似文献   

20.
Reiter NJ  Blad H  Abildgaard F  Butcher SE 《Biochemistry》2004,43(43):13739-13747
The U6 RNA intramolecular stem-loop (ISL) structure is an essential component of the spliceosome and binds a metal ion required for pre-messenger RNA splicing. The metal binding internal loop region of the stem contains a partially protonated C67-(+)A79 base pair (pK(a) = 6.5) and an unpaired U80 nucleotide that is stacked within the helix at pH 7.0. Here, we determine that protonation occurs with an exchange lifetime of approximately 20 micros and report the solution structures of the U6 ISL at pH 5.7. The differences between pH 5.7 and 7.0 structures reveal that the pH change significantly alters the RNA conformation. At lower pH, U80 is flipped out into the major groove. Base flipping involves a purine stacking interaction of flanking nucleotides, inversion of the sugar pucker 5' to the flipped base, and phosphodiester backbone rearrangement. Analysis of residual dipolar couplings as a function of pH indicates that base flipping is not restricted to a local conformational change. Rather, base flipping alters the alignment of the upper and lower helices. The alternative conformations of the U6 ISL reveal striking structural similarities with both the NMR and crystal structures of domain 5 of self-splicing group II introns. These structures suggest that base flipping at an essential metal binding site is a conserved feature of the splicing machinery for both the spliceosome and group II self-splicing introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号