首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytochrome P-450 capable of producing aldosterone from 11-deoxycorticosterone was purified from the zona glomerulosa of rat adrenal cortex. The enzyme was present in the mitochondria of the zona glomerulosa obtained from sodium-depleted and potassium-repleted rats but scarcely detected in those from untreated rats. It was undetectable in the mitochondria of other zones of the adrenal cortex from both the treated and untreated rats. The cytochrome P-450 was distinguishable from cytochrome P-45011 beta purified from the zonae fasciculata-reticularis mitochondria of the same rats. Molecular weights of the former and the latter cytochromes P-450, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 49,500 and 51,500, respectively, and their amino acid sequences up to the 20th residue from the N terminus were different from each other at least in one position. The former catalyzed the multihydroxylation reactions of 11-deoxycorticosterone giving corticosterone, 18-hydroxydeoxycorticosterone, 18-hydroxycorticosterone, and a significant amount of aldosterone as products. On the other hand, the latter catalyzed only 11 beta- and 18-hydroxylation reactions of the same substrate to yield either corticosterone or 18-hydroxydeoxycorticosterone. Thus, at least two forms of cytochrome P-450, which catalyze the 11 beta- and 18-hydroxylations of deoxycorticosterone, exist in rat adrenal cortex, but aldosterone synthesis is catalyzed only by the one present in the zona glomerulosa mitochondria.  相似文献   

2.
Whereas cytochrome P-45011 beta has been recently shown to catalyze the two-step conversion of corticosterone to aldosterone in the bovine and porcine adrenal cortex, the identity of the enzyme involved in the two final steps of aldosterone biosynthesis in the rat adrenal cortex is as yet unknown. Mitochondria from capsular adrenals of sodium-deficient, potassium-replete rats converted corticosterone to 18-hydroxycorticosterone and aldosterone at markedly higher rates than mitochondria from capsular adrenals of sodium-replete, potassium-deficient rats. However, the same preparations exhibited no difference in the 11 beta-hydroxylase activity, i.e. the conversion of deoxycorticosterone to corticosterone. Only mitochondria of zona glomerulosa from rats with stimulated aldosterone biosynthesis contained a 49K protein which showed a strong cross-reactivity with a monoclonal antibody raised against purified bovine cytochrome P-45011 beta. By contrast, a crossreactive protein with a molecular weight of 51K was found in mitochondria of zona fasciculata and in mitochondria of zona glomerulosa from rats with a suppressed aldosterone biosynthesis. These findings indicate the existence of two different forms of cytochrome P-45011 beta in the rat adrenal cortex, with only one of them, i.e. the 49K form, being capable of catalyzing the two final steps of aldosterone biosynthesis in situ.  相似文献   

3.
The steroidogenic response of rat adrenal zona glomerulosa to stimulators is variable and depends on the activity of biosynthetic steps involved in the conversion of deoxycorticosterone (DOC) to aldosterone (Aldo). Corticosterone methyl oxidations (CMO) 1 and 2 are stimulated by sodium restriction and suppressed by potassium restriction. These slow alterations are accompanied by the appearance or disappearance of a specific zona glomerulosa mitochondrial protein with a molecular weight of 49,000. Induction of CMO 1 and 2 activities and the appearance of the 49 K protein can also be elicited in vitro by culture of rat zone glomerulosa cells in a medium with a high potassium concentration. The 49 K protein crossreacts with a monoclonal antibody raised against purified bovine adrenal cytochrome P-450(11 beta). The same antibody stains a protein with a molecular weight of 51,000 in rat zona fasciculata mitochondria and in zone glomerulosa mitochondria of rats in which CMO 1 and 2 activities have been suppressed by potassium restriction and sodium loading. The 51 K crossreactive protein was purified to electrophoretic homogeneity by chromatography on octyl-sepharose. In a reconstituted enzyme system, it converted DOC to corticosterone (B) and to 18-hydroxy-11-deoxycorticosterone (18-OH-DOC) but not to 18-hydroxycorticosterone (18-OH-B) or Aldo. A partially purified 49 K protein preparation from zona glomerulosa mitochondria of rats kept on a low-sodium, high-potassium regimen converted DOC to B, 18-OH-DOC, 18-OH-B and Aldo. According to these results, rat adrenal cytochrome P-450(11 beta) exists in two different forms, with both of them capable of hydroxylating DOC in either the 11 beta- of the 18-position, but with only the 49 K form capable of catalyzing CMO 1 and 2. The adaptation of aldosterone biosynthesis to sodium deficiency or potassium intake in rats is due to the appearance of the 49 K form of the enzyme in zona glomerulosa mitochondria.  相似文献   

4.
18-Hydroxylation of deoxycorticosterone was studies with rat or bovine adrenal mitochondria or with reconstituted systems obtained from these fractions. The reconstituted systems consisted of a partially purified preparation of cytochrome P-450 from rat adrenals and a partially purified NADPH-cytochrome P450 reductase preparation from bovine adrenals. In some experimenta a soluble cytochrome P-450 fraction from bovine adrenals was used. Adrenodoxine and adrenodoxine reductase were shown to be the active components of the NADPH-cytochrome P-450 reductase preparation. Optimal assay conditions were determined for 18-hydroxylation by the crude mitochondrial fraction as well as by the reconstituted systems. In the presence of excess NADPH-cytochrome P-450 reductase fraction, the rate of 18-hydroxylation was linear with time and with the amount of cytochrome P-450. In incubations with intact rat adrenal mitochondria to which Ca2+ and an excess NADPH had been added, NADPH-cytochrome P-450 reductase increased the rate of 18-hydroxylation about 100%, indicating that NADPH-cytochrome P-45o reductase was to some extent rate-limiting. The rate of 18-hydroxylation of deoxycorticosterone by the reconstituted system as well as by intact mitochondrial fraction was much higher than the rat of 18-hydroxylation of corticosterone and progesterone. When the cytochrome P-450 preparation from rat adrenals in the reconstituted system was substituted for cytochrome P-450 from bovine adrenals, the rate of 18-hydroxylation decreased considerably. Under all experimental conditions, the 18-hydroxylation of deoxycorticosterone occurred with a concomitant and efficient 11beta-hydroxylation. Provided the source of cytochrome P-450 was the same, the ratio between 11beta- and 18hydroxylation was constant under all conditions and was not significantly different in the presence of metopirone, carbon monoxide, cytochrome c or different steroids. It is suggested that identical or at least very similar types of cytochrome P-450 are involved in 11beta- and 18-hydroxylation of deoxycorticosterone.  相似文献   

5.
Aldosterone production occurs in the outer area of the adrenal cortex, the zona glomerulosa. The glucocortocoids cortisol and corticosterone, depending upon the species, are synthesized in the inner cortex, the zona fasciculata. Calf zona glomerulosa cells rapidly lose the ability to synthesize aldosterone when placed in primary culture unless they are incubated in the presence of the antioxidants butylated hydroxyanisol and selenous acid, the radioprotectant DMSO, and the cytochrome P-450 inhibitor metyrapone. In the presence of these additives, calf zona fasciculata cells in primary culture synthesize aldosterone at rates which can approach those from cells isolated from the zona glomerulosa. Calf zona glomerulosa and fasciculata cells both responded well to ACTH and angiotensin II, but the zona fasciculata cells respond very poorly compared to glomerulosa cells to increased potassium in the media. Rat zona fasciculata cells in primary culture under similar conditions did not synthesize aldesterone, suggesting that the regulation of the expression of the enzymes responsible for the biosynthesis of aldosterone in the two species is different. Two distinct cytochrome P-450 cDNAs which hydroxylate deoxycorticosterone at the 11β position have been described in the rat, human and mouse. Both cytochrome P-450 cDNAs have been cloned and expressed in non-steroidogenic cells, but only one is expressed in the zona glomerulosa and only this glomerulosa cytochrome P450 can further hydroxylate deoxycorticosterone to generate aldosterone. Two bovine adrenal cDNAs have been described with 11β-hydroxylase activity and their expression products in transiently transfected COS cells can convert deoxycorticosterone into aldosterone. Both enzymes are expressed in all zones of the adrenal cortex. Zonal regulation of aldosterone synthesis in the bovine adrenal gland may be due to an 11β-hydroxylase with aldosterone synthesizing capacity which has not yet been isolated. Alternatively, a single enzyme might be responsible for the several hydroxylations in the pathway between deoxycorticosterone and aldosterone and zonal synthesis might be controlled by unknown factors regulating the expression of C-18 hydroxylation. The incubation of zona fasciculata with antioxidants and metyrapone results in atypical expression of this activity by an unclear mechanism.  相似文献   

6.
Binding of tritiated cortisol to adrenal zona glomerulosa mitochondria was studied and compared with that of corticosterone. Cortisol was shown to bind specifically to the inner membrane of zona glomerulosa mitochondria. Corticosterone and cortisol had similar apparent association constants (Ka) and concentrations of binding sites. The methodology was validated by obtaining similar Ka from both binding plots and kinetic data. Cortisol binding was inhibited by pretreatment with sodium dithionite, and displaced by deoxycorticosterone, corticosterone, 18-hydroxy-corticosterone, 11 beta-hydroxy-18-ethynyl-progesterone and metyrapone, but not by cholesterol. These results suggest that cortisol and corticosterone bind to the same cytochrome P-450.  相似文献   

7.
Expression plasmids containing two cDNAs of a rat cytochrome P450(11 beta) family, pcP450(11 beta)-62 [Nonaka, Y., Matsukawa, N., Morohashi, K., Omura, T., Ogihara, T., Teraoka, H. & Okamoto, M. (1989) FEBS Lett. 255, 21-26] and pcP450(11 beta, aldo)-46 [Matsukawa, N., Nonaka, Y., Ying, Z., Higaki, J., Ogihara, T. & Okamoto, M. (1990) Biochem. Biophys. Res. Commun. 169, 245-252], were constructed and introduced into COS-7 cells by electroporation. Enzymatic activities of the expressed cytochromes P450(11 beta) and P450(11 beta, aldo) were determined by using 11-deoxycorticosterone, corticosterone, 18-hydroxy-11-deoxycorticosterone, 18-hydroxycorticosterone, or 19-hydroxy-11-deoxycorticosterone as a substrate. Cytochrome P450(11 beta) catalyzed 11 beta-, 18- and 19-hydroxylations of 11-deoxycorticosterone and 19-oxidation or 19-hydroxy-11-deoxycorticosterone at substantial rates, 18-hydroxylation of corticosterone at a very low rate, but no aldosterone production. Cytochrome P450(11 beta, aldo) catalyzed 11 beta- and 18-hydroxylations of 11-deoxycorticosterone, 18-hydroxylation of corticosterone and aldosterone production from 11-deoxycorticosterone or corticosterone. But neither 19-hydroxylation of 11-deoxycorticosterone nor 19-oxidation of 19-hydroxy-11-deoxycorticosterone was catalyzed by cytochrome P450(11 beta, aldo).  相似文献   

8.
Cytochrome P-45011beta has been solubilized and partially purified from bovine adrenal cortex mitochondria by means of chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but had a low specific content of P-450 (between 1 and 2 nmol of P-450 per mg of protein). In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11beta-hydroxylation of unconjugated and sulfoconjugated deoxycorticosterone. In the reconstituted system the hydroxylation of deoxycorticosterone sulfate proceeded at a much higher rate than in intact mitochondria, indicating that in the former case interactions between the hydrophilic substrate and P-450 were facilitated. In the presence of Triton X-100 the partially purified cytochrome P-45011beta had a Stokes radius of 4.5 nm, a sedimentation coefficient of 3.1 S, and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011beta . Triton X-100 complex had a molecular weight of about 100,000 and that P-45011beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011beta . Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011beta is the active form of the protein.  相似文献   

9.
Bovine adrenal P-45011 beta catalyzes the 11 beta- and 18-hydroxylation of corticosteroids as well as aldosterone synthesis. These activities of P-45011 beta were found to be modulated by another mitochondrial cytochrome P-450 species, P-450scc. The presence together of P-45011 beta and P-450scc in liposomal membranes was found to remarkably stimulate the 11 beta-hydroxylase activity of P-45011 beta and also stimulate the cholesterol desmolase activity of P-450scc. The stimulative effect of P-450scc on 11 beta-hydroxylase activity diminished by the addition of protein-free liposomes to proteoliposomes containing P-45011 beta and P-450scc, thus showing P-450scc to interact with P-45011 beta in the same membranes. Kinetic analysis of this effect indicated the formation of an equimolar complex between P-45011 beta and P-450scc on liposomal membranes. P-45011 beta in the complex had not only stimulated activity for 11 beta- and 18-hydroxylation of 11-deoxycorticosterone but also suppressed activity for production of 18-hydroxycorticosterone and aldosterone. When the inner mitochondrial membranes of zona fasciculata-reticularis from bovine adrenal were treated with anti-P-450scc IgG, aldosterone formation was stimulated to a greater extent than that of zona glomerulosa. This indicates the aldosterone synthesizing activity of P-45011 beta in the zona fasciculata-reticularis to be suppressed by interaction with P-450scc. The zone-specific aldosterone synthesis of P-45011 beta in bovine adrenal may possibly be induced by differences in interactions with P-450scc of mitochondrial membranes in each zone.  相似文献   

10.
11.
A mass fragmentographic technique for assay of 18-hydroxylation of labeled (exogenous) and unlabeled (endogenous) corticosterone in adrenal mitochondria and in reconstituted cytochrome P-450 systems has been developed. An extract of an incubation of [14-14C]corticosterone is subjected both to thin-layer radiochromatography and to mass fragmentography (as O-methyloxime-trimethylsilyl ether derivative). In the latter procedure the ions at m/e 605 and 607 (specific for the derivatives of unlabeled and labeled 18-hydroxycorticosterone, respectively), at m/e 591 and 593 (specific for the derivatives of unlabeled labeled aldosterone, respectively) and at m/e 548 and 550 (specific for the derivatives of unlabeled and labeled corticosterone, respectively) were followed through the gas-liquid chromatography. From the ratio between the peaks obtained in the mass fragmentography and from the percentage conversion of [4-14C]corticosterone obtained in the thin-layer radiochromatography, the amount of endogenous and exogenous 18-hydroxycorticosterone and aldosterone could be calculated. The effects of time, enzyme, and substrate concentration of 18-hydroxylation were studied and optimal conditions for assay were determined. Under most conditions, the ratio between labeled and unlabeled 18-hydroxylated products was about constant, indicating that labeled and unlabeled corticosterone were not in equilibrium. It was ascertained that the 18-hydroxycorticosterone and aldosterone formed in the incubations were derived from corticosterone. [4-14C]18-Hydroxydeoxycorticosterone was not converted into aldosterone or 18-hydroxycorticosterone. In vitro studies with different 18-hydroxylase inhibitors (spironolactone, canrenone, and canrenoate-K) and studies with rats pretreated with KCl in drinking fluid suggest that 18-hydroxylation of corticosterone is catalyzed by an enzyme system different from that catalyzing 18-hydroxylation of deoxycorticosterone.  相似文献   

12.
13.
An assumption that the aldosterone-synthesizing enzyme exists only in zona glomerulosa cells apparently contradicts our recent findings that a purified bovine adrenocortical cytochrome P-45011 beta catalyzes the aldosterone formation and the enzyme exists in both zones of the adrenal cortex. To gain more insight into the zone specificity of aldosterone production, the aldosterone-synthesizing activity of mitochondria prepared from the isolated zones of adrenal cortex of various animal species was investigated. The intact mitochondria from the bovine or porcine zonae fasciculata-reticularis could not produce aldosterone whereas those from the zona glomerulosa produced it at a significant rate. When the mitochondria from the zonae fasciculata-reticularis were solubilized by the addition of cholate, they produced aldosterone from corticosterone at a rate comparable to that of those from the zona glomerulosa. The presence of specific factor(s) in the zonae fasciculata-reticularis mitochondria inhibiting expression of the aldosterone synthetic activity is discussed. The mitochondria of the rat zonae fasciculata-reticularis could hardly catalyze aldosterone synthesis under the detergent-solubilized conditions, whereas those of the zona glomerulosa could. Immunoblot analysis revealed that the mitochondria of the zonae fasciculata-reticularis contained a protein of Mr 51,000 which was immunocrossreactive with a monoclonal antibody directed against P-45011 beta, whereas those of the zona glomerulosa contained two immunocrossreactive proteins of Mr 51,000 and 49,000. These results suggest that in the case of rat adrenal cortex, a specific aldosterone-synthesizing enzyme exists in the zona glomerulosa.  相似文献   

14.
A cDNA clone encoding human aldosterone synthase cytochrome P-450 (P-450aldo) has been isolated from a cDNA library derived from human adrenal tumor of a patient suffering from primary aldosteronism. The insert of the clone contains an open reading frame encoding a protein of 503 amino acid residues together with a 3 bp 5'-untranslated region and a 1424 bp 3'-untranslated region to which a poly(A) tract is attached. The nucleotide sequence of P-450aldo cDNA is 93% identical to that of P-450(11) beta cDNA. Catalytic functions of these two P-450s expressed in COS-7 cells are very similar in that both enzymes catalyze the formation of corticosterone and 18-hydroxy-11-deoxycorticosterone using 11-deoxycorticosterone as a substrate. However, they are distinctly different from each other in that P-450aldo preferentially catalyzes the conversion of 11-deoxycorticosterone to aldosterone via corticosterone and 18-hydroxycorticosterone while P-450(11)beta substantially fails to catalyze the reaction to form aldosterone. These results suggest that P-450aldo is a variant of P-450(11)beta, but this enzyme is a different gene product possibly playing a major role in the synthesis of aldosterone at least in a patient suffering from primary aldosteronism.  相似文献   

15.
18- and 11beta-Hydroxylation of deoxycorticosterone and side chain cleavage of cholesterol were studied in mitochondria and submitochondrial reconstituted systems prepared from rat and bovine adrenals. A mass fragmentographic technique was used that allows determination of hydroxylation of both exogenous and endogenous cholesterol. The following results were obtained. (1) Treatment of rats with excess potassium chloride in drinking fluid increased mitochondrial cytochrome P-450 as well as 18- and 11beta-hydroxylase activity in the adrenals. Cholesterol side chain cleavage was not affected. In the presence of excess adrenodoxin and adrenodoxin reductase, cytochrome P-450 isolated from potassium chloride-treated rats had higher 18- and 11beta-hydroxylase activity per nmol than cytochrome P-450 isolated from control rats. The stimulatory effects on 18- and 11beta-hydroxylation were of similar magnitude. (2) Long-term treatment with ACTH increased cholesterol side chain cleavage in the adrenals but had no effect on 18- and 11beta-hydroxylase activity. The amount of cytochrome P-450 in the adrenals was not affected by the treatment. It was shown with isolated mitochondrial cytochrome P-450 in the presence of excess adrenodoxin and adrenodoxin reductase that the effect of ACTH was due to increase of side chain cleavage activity per nmol cytochrome P-450. Side chain cleavage of exogenous cholesterol was affected more than that of endogenous cholesterol. (3) Gel chromatography of soluble cytochrome P-450 prepared from rat and bovine adrenal mitochondria yielded chromatographic fractions having either a high 18- and 11beta-hydroxylase activity and a low cholesterol side chain cleavage activity or the reverse. The ratio between 18- and 11beta-hydroxylase activity was approximately constant, provided the origin of cytochrome P-450 was the same. (4) Addition of progesterone to incubations of deoxycorticosterone with soluble or insoluble rat adrenal cytochrome P-450 competitively inhibited 18- and 11beta-hydroxylation of deoxycorticosterone to the same degree. Addition of deoxycorticosterone competitively inhibited 11beta-hydroxylation of progesterone with the same system. Progesterone was not 18-hydroxylated by the system. From the results obtained, it is concluded that 18- and 11beta-hydroxylation have similar properties and that the binding site for deoxycorticosterone is similar or identical in the two hydroxylations. The possibility that the same specific type of cytochrome P-450 is responsible for both 18- and 11beta-hydroxylation of deoxycorticosterone is discussed.  相似文献   

16.
A human cytochrome P-450 with aldosterone synthase activity was purified from the mitochondria of an aldosterone-producing adenoma. It was recognized by an anti-bovine cytochrome P-450(11 beta) IgG and by a specific antibody raised against a portion of the CYP11B2 gene product, one of the two putative proteins encoded by human cytochrome P-450(11 beta)-related genes (Mornet, E., Dupont, J., Vitek, A., and White, P. C. (1989) J. Biol. Chem. 264, 20961-20967). A similar and probably the same aldosterone synthase cytochrome P-450 was detected in the adrenal of a patient with idiopathic hyperaldosteronism. These aldosterone synthases were distinguishable from cytochrome P-450(11 beta), the product of another cytochrome P-450(11 beta)-related gene, i.e. CYP11B1, by their catalytic, molecular, and immunological properties and also by their localization. The latter enzyme was unable to produce aldosterone and did not react with the specific antibody against the CYP11B2 gene product. It was present both in tumor and non-tumor portions of the adrenals carrying the adenoma and in normal adrenal cortex. On the other hand, aldosterone synthase cytochrome P-450 localized in the tumor portions of the adrenals or in the adrenal of a patient with idiopathic hyperaldosteronism. Thus aldosterone synthase cytochrome P-450, a distinct species from cytochrome P-450(11 beta), is responsible for the biosynthesis of aldosterone in the human, at least in patients suffering from primary aldosteronism.  相似文献   

17.
Expression plasmids were constructed using two cDNA clones of P-450(11 beta), pcP-450-(11 beta)-2, and pcP-450(11 beta)-3 (Morohashi et al. (1987) J. Biochem. 102, 559-568 and Kirita et al. (1988) J. Biochem. 104, 683-686), and introduced into COS-7 cells by electroporation. The expression of P-450(11 beta) proteins and their localization in the mitochondria were demonstrated by immunoblotting, immunofluorescence microscopy, and immunoelectron microscopy. The enzymatic activities of the expressed P-450(11 beta)s were determined using deoxycorticosterone (DOC), deoxycortisol, and corticosterone as substrates. Though the activities of the two P-450(11 beta)s for 11-, 18-, and 19-hydroxylation of DOC were almost equal, the production of 18-hydroxycorticosterone and aldosterone from corticosterone by P-450(11 beta)-3 was greater than that by P-450(11 beta)-2.  相似文献   

18.
Potassium intake and aldosterone biosynthesis: the role of cytochrome P-450   总被引:2,自引:0,他引:2  
K+ Repletion for 48 h of rats previously kept on a low K+ diet for 2 weeks specifically increased the conversion of corticosterone into aldosterone and 18-hydroxycorticosterone by incubated capsular fractions of rat adrenal tissue. This increase in the activity of the final steps of aldosterone biosynthesis was not accompanied by an increase in capsular adrenal mitochondrial cytochrome P-450 concentration. By contrast, an increased corticosterone-induced absorbance change (BI) was consistently found in capsular adrenal mitochondria upon K+ repletion. In addition, a type I-like absorbance change was induced with 18-hydroxy-11-deoxycorticosterone but not with 18-hydroxycorticosterone. Therefore, K+ repletion of K+ depleted rats specifically increased the binding of corticosterone and possibly 18-hydroxy-11-deoxycorticosterone to the 18-methyl oxidase enzyme complex. Whether this increased binding was due to an increase in enzyme protein concentration or due to a better availability of the substrate to the enzyme, could not be decided from these experiments.  相似文献   

19.
When corticosterone was incubated with cytochrome P-45011 beta purified from bovine adrenocortical mitochondria in the presence of adrenodoxin, NADPH-adrenodoxin reductase and an NADPH generating system, aldosterone as well as 18-hydroxycorticosterone were formed with turnover numbers of 0.23 and 1.1 nmol/min/nmol P-450, respectively. Phospholipids extracted from adrenocortical mitochondria remarkably enhanced the activity of aldosterone formation by the cytochrome P-45011 beta-reconstituted system. The apparent Km and turnover number were estimated to be 6.9 microM and 2.0 nmol/min/nmol P-450 for aldosterone formation in the presence of the lipidic extract. When 18-hydroxycorticosterone was tested as a substrate, cytochrome P-45011 beta showed catalytic activity for aldosterone synthesis with an apparent Km and turnover number of 325 microM and 5.3 nmol/min/nmol P-450, respectively. Carbon monoxide and metyrapone inhibited the production of aldosterone from corticosterone and that from 18-hydroxycorticosterone. These results suggest that conversion of corticosterone and of 18-hydroxycorticosterone to aldosterone occurs through P-45011 beta-catalyzed reaction.  相似文献   

20.
The separate steps in the formation of aldosterone from cholesterol were studied in a strain of spontaneously hypertensive rats in which phenotypic obesity is inherited as a recessive trait (Koletsky rats). The obese and hypertensive state had little or no effect on side-chain cleavage of cholesterol, formation of progesterone from pregnenolone or 21-hydroxylation. Mitochondrial 18-hydroxylation of endogenous and exogenous corticosterone, however, as well as 18- and 11 beta-hydroxylation of deoxycorticosterone, were increased in obese hypertensive rats, both when compared with non-obese hypertensive siblings and when compared with healthy Sprague-Dawley rats. 18-Hydroxylation of corticosterone was increased more than 18-hydroxylation of deoxycorticosterone. In non-obese hypertensive rats, the adrenal content of mitochondrial cytochrome P-450 was lower than that in obese hypertensive rats but higher than that in rats of the conventional Sprague-Dawley strain. The results are discussed with respect to possible heterogeneity of adrenal cytochrome P-450 and to possible explanations for the changes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号