首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight HSPs families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the HSP60 family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.  相似文献   

2.
The response of a yeast unsaturated fatty acid auxotroph, defective in delta 9-desaturase activity, to heat and ethanol stresses was examined. The most heat- and ethanol-tolerant cells had membranes enriched with oleic acid (C18:1), followed in order by cells enriched with linoleic (C18:2) and linolenic (C18:3) acids. Cells subjected to a heat shock (25-37 degrees C for 30 min) accumulated trehalose and synthesized typical heat shock proteins. Although there were no obvious differences in protein profiles attributable to lipid supplementation of the mutant, relative protein synthesis as determined by densitometric analysis of autoradiograms suggested that hsp expression was different. However, there was no consistent relationship between the synthesis of heat shock proteins and the acquisition of thermotolerance in the lipid supplemented auxotroph or related wild type. Furthermore, trehalose accumulation was also not closely related to stress tolerance. On the other hand, the data presented indicated a more consistent role for membrane lipid composition in stress tolerance than trehalose, heat shock proteins, or ergosterol. We suggest that the sensitivity of C18:3-enriched cells to heat and ethanol may be attributable to membrane damage associated with increases in membrane fluidity and oxygen-derived free radical attack of membrane lipids.  相似文献   

3.
Temperature-induced changes in thermotolerance and protein composition were examined in heat-shocked cells and high-temperature-grown cells of the extremely thermophilic bacterium Rhodothermus obamensis. The survival at temperatures superoptimal for growth (90 and 95°C) was enhanced in both heat-shocked cells and high-temperature-grown cells relative to that of cells grown at optimal temperatures. In a comparison of protein composition using two-dimensional gel electrophoresis, putative heat shock proteins (HSPs) and high-temperature growth-specific proteins (HGPs) were detected. N-terminal amino acid sequence analysis revealed that the putative HSPs were quite similar to the ATP-binding subunits of ABC transporters and the HGPs were proteins corresponding to domains II and III of elongation factor Tu. These results suggested that this extreme thermophile has developed temperature-induced responses that include increased survival under hyperthermal conditions, changes in protein composition, and also the production of novel HSPs.  相似文献   

4.
The response to heat stress in six yeast species isolated from Antarctica was examined. The yeast were classified into two groups: one psychrophilic, with a maximum growth temperature of 20°C, and the other psychrotrophic, capable of growth at temperatures above 20°C. In addition to species-specific heat shock protein (hsp) profiles, a heat shock (15°C–25°C for 3 h) induced the synthesis of a 110-kDa protein common to the psychrophiles, Mrakia stokesii, M. frigida, and M. gelida, but not evident in Leucosporidium antarcticum. Immunoblot analyses revealed heat shock inducible proteins (hsps) corresponding to hsps 70 and 90. Interestingly, no proteins corresponding to hsps 60 and 104 were observed in any of the psychrophilic species examined. In the psychrotrophic yeast, Leucosporidium fellii and L. scottii, in addition to the presence of hsps 70 and 90, a protein corresponding to hsp 104 was observed. In psychrotrophic yeast, as observed in psychrophilic yeast, the absence of a protein corresponding to hsp 60 was noted. Relatively high endogenous levels of trehalose which were elevated upon a heat shock were exhibited by all species. A 10 Celsius degree increase in temperature above the growth temperature (15°C) of psychrophiles and psychrotrophs was optimal for heat shock induced thermotolerance. On the other hand, in psychrotrophic yeast grown at 25°C, only a 5 Celsius degree increase in temperature was necessary for heat shock induced thermotolerance. Induced thermotolerance in all yeast species was coincident with hsp synthesis and trehalose accumulation. It was concluded that psychrophilic and psychrotrophic yeast, although exhibiting a stress response similar to mesophilic Saccharomyces cerevisiae, nevertheless had distinctive stress protein profiles. Received: August 7, 1997 / Accepted: October 22, 1997  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase in crude extracts of Bacillus coagulans KU, a facultative thermophile, showed marked thermolability whether the cells were grown at mesophilic or thermophilic temperature. When extracts were brought to a given ionic strength by the addition of salt and then heat treated, it was possible to confer heat resistance well in excess of the thermophilic growth temperature. Disc electrophoresis is indicative that portions of the profiles are quite different between extracts of cells grown at 37° and 55°. Based on the data, a mechanism of thermophily is postulated that is different from any thus far proposed for thermophilic microorganisms.  相似文献   

6.
Changes in the composition of the membrane lipids and cytosol carbohydrates of the thermophilic fungus Rhizomucor miehei in response to heat shock were studied. Under optimal conditions (41–43°C), high trehalose content (8–11%) was found at all stages of growth of submerged culture. Heat shock (51–53°C) for 1 h did not result in enhanced trehalose synthesis, while increase in shock duration to 3 h resulted in a significant increase in trehalose content. The share of sterols and phosphatidic acids in the membrane lipids increased, while the share of phosphatidylcholines and phosphatidylethanolamines decreased. These processes resulted in increased content of non-bilayer lipids, while the unsaturation degree of the fatty acids of the major phospholipids did not decrease. Comparison of resistance to lethal heat shock in the control and experimental variants of R. miehei revealed that this thermophilic fungus exhibited no acquired heat resistance.  相似文献   

7.
Di Giulio M 《Gene》2000,261(1):189-195
The correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter more frequently into (hyper)thermophile proteins is used to conduct an analysis aiming to establish whether genetic code structuring took place at a low or a high temperature. If the number of codons attributed to the various amino acids in the genetic code constitutes an estimate of the mean amino acid composition of proteins produced when the genetic code was definitively structured, then the thermophily index can also be associated to the genetic code. This value and the sampling of the variable thermophily index of different alignments of protein sequences from mesophile, thermophile and hyperthermophile species make it possible to establish, with an extremely high statistical confidence, that the late stage of genetic code structuring took place in a hyperthermophile (or thermophile) 'organism'. Moreover the 95% confidence interval of the temperature at which the genetic code was fixed turned out to be 91+/-24 degrees C. These observations seem to support the hypothesis that the origin of life might have taken place at a high temperature.  相似文献   

8.
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40 degrees C. The KNU5377 strain evidenced a very similar growth rate at 40 degrees C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43 degrees C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43 degrees C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.  相似文献   

9.
Soybean seedlings when exposed to a heat shock respond in a manner very similar to that exhibited by cultured cells, and reported earlier [2]. Maximum synthesis of heat shock proteins (HSPs) occurs at 40C. The heat shock response is maintained for a relatively short time under continuous high temperature. After 2.5 hr at 40 C the synthesis of HSPs decreases reaching a very low level by 6 hr. The HSPs synthesized by cultured cells and seedlings are identical and there is a large degree of similarity in HSPs synthesized between the taxonomically widely separated species, soybean and corn. Storage protein synthesis in the developing soybean embryo is not inhibited but is actually stimulated during a heat shock, unlike most other non-HSPs, whose synthesis is greatly reduced. Seedlings respond differently to a gradual increase in temperature than they do a sudden heat shock. There is an upward shift of several degrees in the temperature at which maximum protein synthesis occurs and before it begins to be inhibited. In addition, there appears to be a protection of normal protein synthesis from heat shock inhibition when the temperature increase is gradual. An additional function of the heat shock phenomenon might be the protection of seedlings from death caused by extreme heat stress. The heat shock response appears to have relevance to plants in the field.  相似文献   

10.
Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 degrees C without preconditioning but both acquired almost the same level of thermotolerance after 60 min of preconditioning. Both strains showed equal induction of trehalose-6-phosphate synthase and accumulated equal levels of trehalose during the treatment. The conditional mutant ts--187 synthesized no proteins during the preconditioning heat treatment but nevertheless acquired thermotolerance, albeit to a lesser degree than the corresponding wildtype strain. Induction of trehalose-6-phosphate synthase and accumulation of trehalose were reduced to a similar extent. These results show that acquisition of thermotolerance and accumulation of trehalose are closely correlated during heat preconditioning and are modulated by protein synthesis but do not require it.  相似文献   

11.
The role of oxidative stress in the induction of heat-shock proteins (HSPs) was studied in Drosophila Kc cells by comparing the effects of two different inducers, temperature stress and reoxygenation following a period of anoxia, on cellular respiration, thiol status, and the accumulation of HSPs. A heat shock from 25 to 37 degrees C caused a 60% increase in the rate of O2 uptake but caused little oxidative stress as indicated by a constant level of reduced glutathione, a slight increase in oxidized glutathione, and no change in protein sulfhydryls. Heat shock resulted in a pronounced accumulation of HSPs which was not inhibited by anoxic conditions. A different HSP inducer, reoxygenation following anoxia, resulted in an overall inhibition of respiration, the appearance of CN -insensitive O2 uptake, a 50% decrease in the level of reduced glutathione and a fourfold increase in the ratio of oxidized to reduced glutathione. Despite these indicators of oxidative stress, HSP synthesis was less pronounced than observed during heat shock and was not affected by antioxidants. Oxidative stress may induce HSP synthesis in some cases but is not responsible for HSP synthesis during a heat shock.  相似文献   

12.
Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 ± 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.  相似文献   

13.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo-intolerant ( Phaeodactylum tricornutum ) and thermo-tolerant ( Chaetoceros muelleri ) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One-dimensional SDS-PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat-treated P. tricornutum and C. muelleri validated the hypothesis that thermo-tolerant cells contain higher levels of constitutively expressed HSPs. Two-dimensional gel electrophoresis of heat-treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over-expression of key hsp genes.  相似文献   

16.
M Di Giulio 《Gene》2001,281(1-2):11-17
By exploiting the correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter thermophile/hyperthermophile proteins, an analysis is conducted in order to establish whether the last universal common ancestor (LUCA) was a mesophile or a (hyper)thermophile. This objective is reached by using maximum parsimony and maximum likelihood to reconstruct the ancestral sequences of the LUCA for two pairs of sets of paralogous protein sequences by means of the phylogenetic tree topology derived from the small subunit ribosomal RNA, even if this is rooted in all three possible ways. The thermophily index of all the reconstructed ancestral sequences of the LUCA belongs to the set of the thermophile/hyperthermophile sequences, thus supporting the hypotheses that see the LUCA as a thermophile or a hyperthermophile.  相似文献   

17.
Small heat shock proteins (HSPs) have been shown to confer thermotolerance in many organisms. Here, we demonstrate that small HSPs (sHSPs) can also be involved in development of thermotolerance in Pisolithus sp. In heat shock response, Pisolithus isolate RV82 synthesized proteins of molecular mass 28, 26 and 15–18 kDa. These group of proteins are synthesized when mycelial mass are exposed to heat shock temperature (42 °C) for short period (30 min) and incubated back at 28 °C, the optimal temperature for growth. Our results show sHSPs are an important biochemical alteration in ectomycorrhizal fungi under thermal stress.  相似文献   

18.
Summary Heat shock and ethanol stress of brewing yeast strains resulted in the induction of a set of proteins referred to as heat shock proteins (HSPs). At least six strongly induced HSPs were identified in a lager brewing strain and four HSPs in an ale brewing strain. Four of these HSPs with molecular masses of approximately 70, 38, 26 and 23 kDa were also identified in two laboratory strains ofSaccharomyces cerevisiae. The appearance of HSPs correlated with increased survival of strains at elevated temperatures and high concentrations of ethanol. These results suggest that HSPs may play a role in the ethanol and thermotolerance of yeasts. The properties of these proteins and membrane fatty acids in relation to heat and ethanol shock are being investigated.  相似文献   

19.
Pea plants ( Pisum sativum L. cv. Feltham First) exposed to a heat stress of 37°C for 6 h accumulated two low molecular weight (LMW) heat shock proteins (HSPs) of molecular mass 22 kDa. The two LMW HSPs were associated with purified mitochondria. N‐terminal amino acid sequencing analysis indicates that the more basic of these proteins is a novel protein. The response of other cultivars of P. sativum to heat shock revealed that up to three 22‐kDa HSPs were expressed in a cultivar‐specific manner. Evidence presented suggests that the different 22‐kDa HSPs arise as a result of there being multiple 22‐kDa HSP genes. The expression of the most basic novel HSP was studied in the Feltham First cultivar using two dimensional SDS‐PAGE. Treatment of intact plants with chloramphenicol and cycloheximide prior to heat stress treatment indicated that the LMW HSPs were nuclear encoded and de novo synthesised. The response to heat shock was rapid with protein expression detected within 45 min and the protein remained in excess of 6 days following removal of the stress. The protein accumulated to very high levels with maximal expression being 2% of the total mitochondrial protein. The results are discussed in relation to the likely role of LMW HSPs in thermotolerance.  相似文献   

20.
The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号