首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer, with a poor prognosis. Deregulation of WNT and NOTCH signaling pathways is important in ESCC progression, which can be due to either malfunction of their components or crosstalk with other pathways. Therefore, identification of new crosstalk between such pathways may be effective to introduce new strategies for targeted therapy of cancer. A correlation study was performed to assess the probable interaction between growth factor receptors and WNT/NOTCH pathways via the epidermal growth factor receptor (EGFR) and Musashi1 (MSI1), respectively.

Methods

Levels of MSI1/EGFR mRNA expression in tumor tissues from 48 ESCC patients were compared to their corresponding normal tissues using real-time polymerase chain reaction.

Results

There was a significant correlation between EGFR and MSI1 expression (p?=?0.05). Moreover, there was a significant correlation between EGFR/MSI1 expression and grade of tumor differentiation (p?=?0.02).

Conclusion

This study confirms a direct correlation between MSI1 and EGFR and may support the important role of MSI1 in activation of EGFR through NOTCH/WNT pathways in ESCC.
  相似文献   

2.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

3.

Introduction

Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.

Objectives

The TCA cycle is the main source of energy production and its continuous flow is essential for cell survival. Modulated regulation of TCA cycle can affect ATP production and influence CHO cell productivity.

Methods

To determine the key metabolic reactions of the cycle associated with cell growth in CHO cells, we transiently silenced each gene of the TCA cycle using RNAi.

Results

Silencing of at least four TCA cycle genes was detrimental to CHO cell growth. With an exception of mitochondrial aconitase (or Aco2), all other genes were associated with ATP production reactions of the TCA cycle and their resulting substrates can be supplied by other anaplerotic and cataplerotic reactions. This study is the first of its kind to have established key role of aconitase gene in CHO cells. We further investigated the temporal effects of aconitase silencing on energy production, CHO cell metabolism, oxidative stress and recombinant protein production.

Conclusion

Transient silencing of mitochondrial aconitase inhibited cell growth, reduced ATP production, increased production of reactive oxygen species and reduced cell specific productivity of a recombinant CHO cell line by at least twofold.
  相似文献   

4.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   

5.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

6.

Background

Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation.

Design and methods

We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants.

Results

We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo.

Conclusion

The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication.
  相似文献   

7.

Background

We previously demonstrated that the local immune status correlated with the glioma prognosis. Interleukin-6 (IL6) was identified as an important local immune-related risk marker related to unfavourable prognosis. In this study, we further investigated the role and regulation of IL6 signalling in glioma.

Methods

The expression and prognostic value of IL6 and the IL6 receptor (IL6R) were explored in The Cancer Genome Atlas (TCGA) and REMBRANDT databases and clinical samples. Functional effects of genetic knockdown and overexpression of IL6R or IL6 stimulation were examined in vitro and in tumours in vivo. The effects of the nuclear factor of activated T cells-1 (NFAT1) on the promoter activities of IL6R and IL6 were also examined.

Results

High IL6- and IL6R-expression were significantly associated with mesenchymal subtype and IDH-wildtype gliomas, and were predictors of poor survival. Knockdown of IL6R decreased cell proliferation, invasion and neurosphere formation in vitro, and inhibited tumorigenesis in vivo. IL6R overexpression or IL6 stimulation enhanced the invasion and growth of glioma cells. TCGA database searching revealed that IL6- and IL6R-expression were correlated with that of NFAT1. In glioma cells, NFAT1 enhanced the promoter activities of IL6R and IL6, and upregulated the expression of both IL6R and IL6.

Conclusion

NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of gliomas, emphasizing the role of immunomodulatory factors in glioma malignant progression.
  相似文献   

8.

Objectives

Interleukin- 1 (IL-1) is a multifunctional proinflammatory cytokine. There have been studies suggesting a role in affecting growth and invasiveness of malignant breast cells by either blocking or stimulating growth of cultured MCF-7 breast cancer cells. This effect may be mediated by induction of COX-2. Aspirin is an inhibitor of COX-2 and has been implicated, with other non-steroidal anti-inflammatory drugs (NSAIDS) in prevention and treatment of breast cancer. In this study the in vitro effects of IL-1 and aspirin on growth of MCF-7 human breast cancer cells was examined.

Methods

MCF-7 cells were treated with various concentrations of IL-1 and aspirin alone and in combination. Cell growth was assessed by cell number measurement.

Results

Aspirin significantly decreased growth rate in a dose-dependant manner, alone and as a combined treatment with IL-1 with a maximum reduction in growth rate at 300 mg/ml (P < 0.05). Treatment with IL-1 alone showed no significant effect on growth rate of MCF-7 cells (P > 0.05).

Conclusion

This study confirms that aspirin suppresses the proliferation rate of MCF-7 cells both as a single agent and in combination with IL-1. It also suggests that IL-1 alone does not stimulate or inhibit growth of MCF-7 cells.
  相似文献   

9.
10.

Objectives

To explore potential effects of recombinant human fibroblast growth factor 20 (rhFGF20) in the growth of cultured mouse vibrissal follicles.

Results

The growth of cultured mouse vibrissal follicles was significantly induced by rhFGF20 in a dose dependent pattern in the in vitro vibrissal follicle organ culture model. However, too high concentration of rhFGF20 could inhibit the growth of vibrissal follicles. We further demonstrated that rhFGF20 stimulated the proliferation of hair matrix cells and activated Wnt/β-catenin signaling pathway.

Conclusions

The rhFGF20 might be a potential therapeutic agent to treat hair loss disorders.
  相似文献   

11.

Background

Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear.

Methods

Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used.

Results

Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation.

Conclusions

These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
  相似文献   

12.

Objective

To evaluate the anti-tumor effects of trichosanthin after fusion with a cell penetrating peptide, heparin-binding peptide (HBP), derived from human heparin-binding EGF-like growth factor (HB-EGF).

Results

The fusion protein of trichosanthin-HBP was expressed in Escherichia coli BL21 and purified by Ni–NTA affinity chromatography. The HBP domain had no influence on the topological inactivation activity and N-glycosidase activity of trichosanthin. Trichosanthin-HBP significantly inhibited the growth of tested cancer cells which are impervious to trichosanthin. Tumor cell apoptosis and both the mitochondrial- and death receptor-mediated apoptotic signaling pathways induced by trichosanthin-HBP were more significant than those induced by trichosanthin in HeLa cells.

Conclusion

HBP is an efficient intracellular delivery vehicle for trichosanthin and makes trichosanthin-HBP become a promising agent for cancer therapy.
  相似文献   

13.

Background

Mesenchymal stem cells (MSCs) are increasingly considered to be used as biological immunosuppressants in hematopoietic stem cell transplantation (HSCT). In the early reconstitution phase following HSCT, natural killer (NK) cells represent the major lymphocyte population in peripheral blood and display graft-vs-leukemia (GvL) effects. The functional interactions between NK cells and MSCs have the potential to influence the leukemia relapse rate after HSCT. Until date, MSC-NK cell interaction studies are largely focussed on bone marrow derived (BM)-MSCs. Umbilical cord derived (UC)-MSCs might be an alternative source of therapeutic MSCs. Thus, we studied the interaction of UC-MSCs with unstimulated allogeneic NK cells.

Results

UC-MSCs could potently suppress NK cell cytotoxicity in overnight cultures via soluble factors. The main soluble immunosuppressant was identified as prostaglandin (PG)-E2. Maximal PGE2 release involved IL-1β priming of MSCs after close contact between the NK cells and UC-MSCs. Interestingly, blocking gamma-secretase activation alleviated the immunosuppression by controlling PGE2 production. IL-1 receptor activation and subsequent downstream signalling events were found to require gamma-secretase activity.

Conclusion

Although the role of PGE2 in NK cell-MSC has been reported, the requirement of cell-cell contact for PGE2 induced immunosuppression remained unexplained. Our findings shed light on this puzzling observation and identify new players in the NK cell-MSC crosstalk.
  相似文献   

14.

Background

Molecular profiling of colorectal cancer (CRC) based on global gene expression has revealed multiple dysregulated signalling pathways associated with drug resistance and poor prognosis. However, the role of BMP2 signaling in CRC is not fully characterised.

Methods

Bioinformatics data analysis were conducted on the GSE21510 dataset. Leniviral technology was utilized to stably express BMP2 in the HCT116 CRC model. Gene expression profiling was conducted using Agilent microarray platform while data normalization and bioinformatics were conducted using GeneSpring software. Changes in gene expression were assessed using qRT-PCR. AlamarBlue assay was used to assess cell viability in vitro. In vivo experiments were conducted using SCID mice.

Results

Our data revealed frequent downregulation of BMP2 in primary CRC tissues. Additionally, interrogation of publically available gene expression datasets revealed significant downregulation of BMP2 in metastatic recurrent compared to non-metastatic cancer (p = 0.02). Global gene expression analysis in CRC cells over-expressing BMP2 revealed multiple dysregulated pathways mostly affecting cell cycle and DNA damage response. Concordantly, lentiviral-mediated re-expression of BMP2 inhibited HCT116 CRC growth, sphere formation, clonogenic potential, cell migration, and sensitized CRC cells to 5-fluorouracil (5-FU) in vitro. Additionally, BMP2 inhibited CRC tumor formation in SCID mice.

Conclusions

Our data revealed an inhibitory role for BMP2 in CRC, suggesting that restoration of BMP2 expression could be a potential therapeutic strategy for CRC.
  相似文献   

15.

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
  相似文献   

16.

Objectives

To develop and validate a microdilution method for measuring the minimum inhibitory concentration (MIC) of biosurfactants.

Results

A standardized microdilution method including resazurin dye has been developed for measuring the MIC of biosurfactants and its validity was established through the replication of tetracycline and gentamicin MIC determination with standard bacterial strains.

Conclusion

This new method allows the generation of accurate MIC measurements, whilst overcoming critical issues related to colour and solubility which may interfere with growth measurements for many types of biosurfactant extracts.
  相似文献   

17.

Objectives

To investigate the effects of operational process conditions on expression of MHC class II protein from a stable Drosophila S2 cell line.

Results

When the Drosophila S2 cells were grown in vented orbitally shaken TubeSpin bioreactor 600 containers, cell growth was improved three-fold and the yield of recombinant major histocompatibility (MHC) class II protein (HLA-DR12xHis) increased four-fold over the levels observed for the same cells cultivated in roller bottles (RB) without vented caps. Culturing in RB with vented caps while increasing the rotation speed from 6 rpm to 18 rpm also improved cell growth five-fold and protein productivity three-fold which is comparable to the levels observed in the orbitally shaken containers. Protein activity was found to be almost identical between the two vessel systems tested.

Conclusions

Optimized cell culture conditions and a more efficient vessel type can enhance gas transfer and mixing and lead to substantial improvement of recombinant product yields from S2 cells.
  相似文献   

18.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

19.

Objective

To investigate the role of lncRNA ZEB1-AS1 in B-lineage acute lymphoblastic leukemia (B-ALL).

Results

ZEB1-AS1 levels were aberrantly up-regulated in B-ALL. All correlated with STAT3 activation and IL-11 production. Moreover, a high level of ZEB1-AS1 predicted poor prognosis of B-ALL patients. Mechanistically, ZEB1-AS1 could bind to IL-11 and promote IL-11 stability. Down-regulation of ZEB1-AS1 decreased IL-11 production of human bone marrow stromal cells (BMSCs), which led to suppressed proliferation and inhibited IL-11/STAT3 pathway in BALL-1 cells.

Conclusions

ZEB1-AS1 promotes the activation of IL-11/STAT3 signaling pathway by associating with IL-11 in B-ALL.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号