首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

2.
1. An improved type of ground glass homogenizer for soft tissues has been described which brings about a high degree of cell disruption and liberation of nuclei without causing appreciable damage to mitochondria. The gentleness and effectiveness of the new homogenizer in respect to isolation of mitochondria have been ascertained by comparing the ATP-ase activities of mitochondria isolated in 0.25 M sucrose solution without pH adjustment using a previous type of homogenizer with those of mitochondria isolated under the same conditions with the aid of the new homogenizer. In these experiments sucrose of 0.25 molarity without pH adjustment has been used in order to maintain the mitochondria in a rather sensitive state so as to make slightly deleterious effects of homogenization readily apparent. 2. A new method is described for the isolation of morphologically intact mitochondria and cell nuclei from the same homogenate. In this procedure the pH of the homogenate in 0.44 M sucrose is maintained at 6.0–6.2 with citric acid during the homogenization. An alternative method employing 0.44 M sucrose plus 0.005 M CaCl2 is given for the isolation of nuclei from tumor cells. However, the latter method does not produce unaltered mitochondria. 3. The α-ketoglutarate, malate, succinate, and hexanoate oxidases of the "intact" mitochondria isolated in 0.44 M sucrose adjusted to pH 6.0–6.2 with very dilute citric acid as described in this paper have been investigated, and it has been shown that the mitochondria compare favorably to those isolated in 0.25 M sucrose by a previously described method. 4. Mitochondria have been found to contain an enzyme which causes nuclei to lose their ability to form gels in dilute alkali. This enzyme is released from the mitochondria when the latter are disrupted. 5. Some properties of nuclei isolated by the new method have been briefly discussed.  相似文献   

3.
Skeletal muscle myofibrils, in the presence of 2 mM MgCl2 at pH 7.0, were found to have two classes of calcium-binding sites with apparent affinity constants of 2.1 x 106 M -1 (class 1) and ∼3 x 104 M -1 (class 2), respectively. At free calcium concentrations essential for the activation of myofibrillar contraction (∼10-6 M) there would be significant calcium binding only to the class 1 sites. These sites could bind about 1.3 µmoles of calcium per g protein. Extraction of myosin from the myofibrils did not alter their calcium-binding parameters. Myosin A, under identical experimental conditions, had little affinity for calcium. The class 1 sites are, therefore, presumed to be located in the I filaments. The class 1 sites could only be detected in F actin and myosin B preparations which were contaminated with the tropomyosin-troponin complex. Tropomyosin bound very little calcium. Troponin, which in conjunction with tropomyosin confers calcium sensitivity on actomyosin systems, could bind 22 µmoles of calcium per g protein with an apparent affinity constant of 2.4 x 106 M -1. In view of the identical affinity constants of the myofibrils and troponin and the much greater number of calcium-binding sites on troponin it is suggested that calcium activates myofibrillar contraction by binding to the troponin molecule.  相似文献   

4.
The sites of lead phosphate precipitation in mouse bladder smooth muscle incubated with adenosine triphosphate and lead nitrate were studied by electron microscopy. The media constituents and incubating conditions were independently varied so that we could determine optimal conditions for histochemical demonstration of ATPase activity in agranular endoplasmic reticulum. Specimens of glutaraldehyde-fixed bladder muscle, frozen, cut into 10–40-µ sections, and incubated for 1 hr at 25°C in medium containing 0.025 M ATP, 0.0025 M lead nitrate, 0.05 M magnesium chloride, and 0.09 M sodium acetate buffer at pH 6.2, exhibited microcrystalline deposits in agranular endoplasmic reticulum and pinocytotic vesicles. Lead salt deposition was also noted in terminal cisternae of sarcoplasmic reticulum in skeletal muscle similarly treated, suggesting that the organelle systems in the two types of muscle cells subserve a common function.  相似文献   

5.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

6.
Uptake of monosaccharides by guinea-pig cerebral-cortex slices   总被引:1,自引:1,他引:0       下载免费PDF全文
By the use of 1mm-iodoacetate to inhibit glycolysis in guinea-pig cerebral tissue slices, the kinetics of the uptake of monosaccharides on transfer of tissue from 0° to 37° were studied. d-Ribose, d-galactose, d-mannose, l-sorbose, and d-fructose showed diffusion kinetics, whereas 2-deoxy-d-glucose, d-glucose, d-arabinose and d-xylose showed saturation kinetics.  相似文献   

7.
A method for isolating the mitotic apparatus from dividing sea urchin eggs without the use of ethyl alcohol or of detergents is described. In the present method, the eggs are dispersed directly in a medium containing 1 M (to 1.15 M) sucrose, 0.15 M dithiodiglycol, and 0.001 M Versene at pH 6, releasing the visibly intact mitotic apparatus. The method is designed for studies of enzyme activities, lipid components, and the variables affecting the stability of the apparatus.  相似文献   

8.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

9.
1. The polychaete worm Marphysa sanguinea has a circulating erythrocruorin of mol.wt. about 2·4×106 (S020,w 58·2s, D20,w 2·06×10−7 cm.2/sec). This is the predominant form existing at pH 6–8 and (non-protein) I 0·10–0·21, and also at approx. pH 6·7 and I 0·15–3·00. 2. The pigment contains 2·24% of protohaem. 3. The 58s protein has an electrophoretic mobility of 8·08×10−5 cm.2/v/sec. at pH 8·12, I 0·21 and 0°. The isoelectric point of suspended particles is 4·63 at I 0·16 and 21·5°. 4. At very low ionic strength and pH 6·7 (unbuffered) the 58s pigment associates reversibly to 97s and 150s forms, which are probably dimer and tetramer species. 5. At pH 10·0 and I 0·025, it dissociates irreversibly to give a small amount of 2–4s non-haem-containing protein and much 9s haem-enriched protein. These and the 58s pigment may correspond to structures found in Levin's (1963) electron-microscope studies of other erythrocruorins. 6. Absorption spectra of the 58s oxygenated erythrocruorin and the deoxygenated and carbon monoxide derivatives have been obtained.  相似文献   

10.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

11.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

12.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

13.
1. The `30s' and `50s' ribosomes from ribonuclease-active (Escherichia coli B) and -inactive (Pseudomonas fluorescens and Escherichia coli MRE600) bacteria have been studied in the ultracentrifuge. Charge anomalies were largely overcome by using sodium chloride–magnesium chloride solution, I 0·16, made 0–50mm with respect to Mg2+. 2. Differentiation of enzymic and physical breakdown at Mg2+ concentrations less than 5mm was made by comparing the properties of E. coli B and P. fluorescens ribosomes. 3. Ribonuclease-active ribosomes alone showed a transformation of `50s' into 40–43s components. This was combined with the release of a small amount of `5s' material which may be covalently bound soluble RNA. Other transformations of the `50s' into 34–37s components were observed in both ribonuclease-active and -inactive ribosomes at 1·0–2·5mm-Mg2+, and also with E. coli MRE600 when EDTA (0·2mm) was added to a solution in 0·16m-sodium chloride. 4. Degradation of ribonuclease-active E. coli B ribosomes at Mg2+ concentration 0·25mm or less was coincident with the formation of 16s and 21s ribonucleoprotein in P. fluorescens, and this suggested that complete dissociation of RNA from protein was not an essential prelude to breakdown of the RNA by the enzyme. 5. As high Cs+/Mg2+ ratios cause ribosomal degradation great care is necessary in the interpretation of equilibrium-density-gradient experiments in which high concentrations of caesium chloride or similar salts are used. 6. The importance of the RNA moiety in understanding the response of ribosomes to their ionic environment is discussed.  相似文献   

14.
A phosphate-buffered saline and a chemically defined synthetic medium for in vitro maintenance of imaginal discs of Drosophila melanogaster were developed. The composition of the chemically defined medium was varied in order to optimize the incorporation of tritiated uridine into RNA and tritiated amino acids into acid-insoluble protein. The optimal ranges obtained were: pH, 6.75–7.35; osmolarity, 285–345 milliosmoles/liter; sodium concentration, 40–60 mM/liter; potassium concentration, 40–60 mM/liter; magnesium concentration, 0.5–3.5 mM/liter; calcium concentration, 0.3–1.5 mM/liter; and inorganic phosphate concentration, 1.5–4.0 mM/liter. The phosphate-buffered saline is superior to a commonly used insect Ringer solution in maintaining total RNA and acid-insoluble protein synthesis in culture. The chemically defined synthetic medium permits linear total RNA and acid-insoluble protein synthesis for more than 48 hr, DNA synthesis for several hours, normal differentiation to occur after 74 hr in vitro, and trypsinization of imaginal discs into single cell suspensions without developmental damage.  相似文献   

15.
The respiration of isolated rat hepatic cells in suspension   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Rat-hepatic cells in suspension have been shown to have an endogenous respiration of 5·6±0·17 when suspended in 0·1 m-sucrose and 0·02 m-tris–hydrochloric acid buffer. The respiration in 0·25 m-sucrose and 0·02 m-tris–hydrochloric acid buffer is 30–40% less. 2. Potassium chloride (0·05 m) is slightly inhibitory and calcium chloride (0·0025 m) highly inhibitory to endogenous respiration of the hepatic cells in suspension. The cells do not respire in Krebs–Ringer phosphate buffer. 3. The respiration of the hepatic cells in suspension is stimulated by pyruvate, citrate, isocitrate, oxoglutarate, succinate, fumarate, malate and glutamate; there is no significant stimulation (or inhibition) by glucose, fructose, acetate and butyrate. In almost all the cases where stimulation was observed, it was found that the higher the endogenous respiration the lower is the stimulation.  相似文献   

16.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

17.
Streptococcus intermedius is a known human pathogen and belongs to the anginosus group (S. anginosus, S. intermedius, and S. constellatus) of streptococci (AGS). We found a large open reading frame (6,708 bp) in the lac operon, and bioinformatic analysis suggested that this gene encodes a novel glycosidase that can exhibit β-d-galactosidase and N-acetyl-β-d-hexosaminidase activities. We, therefore, named this protein “multisubstrate glycosidase A” (MsgA). To test whether MsgA has these glycosidase activities, the msgA gene was disrupted in S. intermedius. The msgA-deficient mutant no longer showed cell- and supernatant-associated β-d-galactosidase, β-d-fucosidase, N-acetyl-β-d-glucosaminidase, and N-acetyl-β-d-galactosaminidase activities, and all phenotypes were complemented in trans with a recombinant plasmid carrying msgA. Purified MsgA had all four of these glycosidase activities and exhibited the lowest Km with 4-methylumbelliferyl-linked N-acetyl-β-d-glucosaminide and the highest kcat with 4-methylumbelliferyl-linked β-d-galactopyranoside. In addition, the purified LacZ domain of MsgA had β-d-galactosidase and β-d-fucosidase activities, and the GH20 domain exhibited both N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities. The β-d-galactosidase and β-d-fucosidase activities of MsgA are thermolabile, and the optimal temperature of the reaction was 40°C, whereas almost all enzymatic activities disappeared at 49°C. The optimal temperatures for the N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities were 58 and 55°C, respectively. The requirement of sialidase treatment to remove sialic acid residues of the glycan branch end for glycan degradation by MsgA on human α1-antitrypsin indicates that MsgA has exoglycosidase activities. MsgA and sialidase might have an important function in the production and utilization of monosaccharides from oligosaccharides, such as glycans for survival in a normal habitat and for pathogenicity of S. intermedius.  相似文献   

18.
As a crucial metabolic intermediate, l-lactate is involved in redox balance, energy balance, and acid–base balance in organisms. Moderate exercise training transiently elevates plasma l-lactate levels and ameliorates obesity-associated type 2 diabetes. However, whether moderate l-lactate administration improves obesity-associated insulin resistance remains unclear. In this study, we defined 800 mg/kg/day as the dose of moderate l-lactate administration. In mice fed with a high-fat diet (HFD), moderate l-lactate administration for 12 weeks was shown to alleviate weight gain, fat accumulation, and insulin resistance. Along with the phenotype alterations, white adipose tissue thermogenesis was also found to be elevated in HFD-fed mice. Meanwhile, moderate l-lactate administration suppressed the infiltration and proinflammatory M1 polarization of adipose tissue macrophages (ATMs) in HFD-fed mice. Furthermore, l-lactate treatment suppressed the lipopolysaccharide-induced M1 polarization of bone marrow–derived macrophages (BMDMs). l-lactate can bind to the surface receptor GPR132, which typically drives the downstream cAMP–PKA signaling. As a nutrient sensor, AMP-activated protein kinase (AMPK) critically controls macrophage inflammatory signaling and phenotype. Thus, utilizing inhibitors of the kinases PKA and AMPK as well as siRNA against GPR132, we demonstrated that GPR132–PKA–AMPKα1 signaling mediated the suppression caused by l-lactate treatment on BMDM M1 polarization. Finally, l-lactate addition remarkably resisted the impairment of lipopolysaccharide-treated BMDM conditional media on adipocyte insulin sensitivity. In summary, moderate l-lactate administration suppresses ATM proinflammatory M1 polarization through activation of the GPR132–PKA–AMPKα1 signaling pathway to improve insulin resistance in HFD-fed mice, suggesting a new therapeutic and interventional approach to obesity-associated type 2 diabetes.  相似文献   

19.
20.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号