首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
  相似文献   

2.

Background

Kounis syndrome (KS) has been described as the coincidental occurrence of acute coronary syndromes during an allergic reaction with cardiac anaphylaxis. It is caused by inflammatory mediators released after exposure to drugs, food, environmental and other triggers. Oxidative stress occurring in various inflammatory disorders causes molecular damage with the production of advanced oxidation products (AOPPs) and advanced glycation end products (AGEs).

Case presentation

Markers of oxidative stress were evaluated in a patient who had experienced KS after antibiotic administration in order to investigate the possible role of these molecules in KS. No data, up to now, are available on biomarkers of oxidative stress in patients with drug-induced KS.

Conclusions

AOPPs, but not AGEs, were significantly increased in the KS affected patient compared to controls as already reported in mastocytosis affected patients.
  相似文献   

3.

Background

The present study elucidates the protective potential of bromelain against dichlorvos intoxication in mice brains. Dichlorvos induces the oxidative stress by disproportionating the balance between free radicals generation and their scavenging in neurons which leads to neuronal degeneration.

Methods

In this study, mice were divided into four groups-group I (control), group II (dichlorvos treated), group III (bromelain treated) and group IV (exposed to both bromelain and dichlorvos both).

Results

Dichlorvos treatment increased the levels of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) which indicate the increased oxidative stress. Meanwhile, brain endogenous antioxidants and cholinesterases level was decreased after dichlorvos exposure. Levels of TBARS and PCC decreased whereas cholinesterases level was recorded to be elevated after bromelain exposure.

Conclusion

Bromelain offered neuroprotection by decreasing oxidative stress and augmenting cholinesterases in mice brains. This study highlights the invulnerability of bromelain against oxidative and cholinergic deficits in mice brains.
  相似文献   

4.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

5.

Background

Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.

Objective

In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.

Methods

A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”

Results

The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.

Conclusion

The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
  相似文献   

6.

Background

The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts.

Results

To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent (“detox”). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host’s offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria).

Conclusions

These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system.

Reviewers

This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman.
  相似文献   

7.
8.

Background

Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

Methods

A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

Results

Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells

Conclusions

Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.
  相似文献   

9.

BACKGROUND

Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions.

OBJECTIVE

In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns.

METHODS

We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab.

RESULTS

We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016.

CONCLUSION

Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
  相似文献   

10.

Background

Porphyromonas gingivalis is a periodontal pathogen, which is considered to be a keystone pathogen for periodontitis. A diverse conglomerate of P. gingivalis virulence factors including lipopolysaccharide, fimbriae, capsular polysaccharide, haemagglutinin and cysteine proteases (Arg-gingipains and Lys-gingipain) are considered to be involved in the pathogenesis of periodontitis. Leupeptin is a cysteine protease inhibitor which is specific for Arg gingipains. The present review focuses on action of leupeptin on Arg gingipains.

Method

A search was carried out systematically from the start till September, 2016. The search was made in Medline database via PubMed. The keywords enlisted were “leupeptin”; “gingipains”; “periodontitis” using Boolean operator “and.”

Results

The result was selection of 58 articles which linked leupeptin to periodontitis and gingipains; pathogenesis of periodontitis, pathogenicity of gingipains and role of leupeptin.

Conclusion

It was concluded that leupeptin inhibits and attenuates a number of destructive activities of Arg gingipains including inhibition of platelet aggregation; inhibit degradation of LL-37, which is an antimicrobial peptide; blocking inhibition of monocyte chemoattractant protein; restoring level of interleukin-2; inhibiting degradation of collagen type I and IV to name a few.
  相似文献   

11.

Background

Residual alcohol effects on physiological and psychological symptoms are commonly experienced the morning after alcohol consumption. The purpose of this study was to assess the effects of L-ornithine on subjective feelings and salivary stress markers the morning after alcohol consumption and to investigate whether L-ornithine acutely accelerates ethanol metabolism.

Methods

This study had a randomized, placebo-controlled, double-masked crossover design. Subjects were all healthy Japanese adults with the ‘flusher’ phenotype for alcohol tolerance. In experiment 1, 11 subjects drank 0.4 g/kg body weight alcohol 1.5 h before their usual bedtime. Half an hour after drinking, they ingested either a placebo or 400 mg ornithine. The next morning on awakening, subjects completed a questionnaire containing a visual analog scale (VAS), the Oguri-Shirakawa-Azumi sleep inventory MA version (OSA-MA), and a profile of mood states (POMS) and collected a saliva sample for measurement of salivary stress markers (cortisol, secretory immunoglobulin A, and α-amylase). In experiment 2, placebo or 400 mg ornithine were administrated to 16 subjects both before and after drinking, and the feeling of drunkenness, breath ethanol concentration and one-leg standing time were repeatedly investigated until 180 min after alcohol consumption.

Results

There were significant decreases in “awareness”, “feeling of fatigue” and “lassitude” VAS scores and in “anger-hostility” and “confusion” POMS scores and a significant increase in “sleep length” in the OSA-MA test. Salivary cortisol concentrations on awakening were reduced after ornithine supplementation. There were no differences between ornithine and placebo in any of the subjective or physiological parameters of acute alcohol metabolism.

Conclusions

Taking 400 mg ornithine after alcohol consumption improved various negative feelings and decreased the salivary stress marker cortisol the next morning. These effects were not caused by an increase in acute alcohol metabolism.
  相似文献   

12.

Objectives

Identification of novel microbial factors contributing to plant protection against abiotic stress.

Results

The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.

Conclusion

Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.
  相似文献   

13.

Background

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.

Objective

To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.

Methods

A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”

Results

Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.

Conclusion

Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.
  相似文献   

14.

Background and aims

Earthworms effect on plant growth is mediated by their dejections or “casts”, a complex mixture of organic matter, minerals and microbes. In casts, different processes such as organic matter mineralization and signal molecule production follow a complex temporal dynamics. An adaptation of root morphology to cast dynamics could allow an efficient nitrogen capture by the plant.

Methods

The plant Brachypodium distachyon was grown in a laboratory experiment with different proportions of casts of increasing ages. Casts were labelled with 15N to quantify the plant N uptake from the casts. Plant biomass and morphology, especially root system structure, were analysed.

Results

The age of casts had an effect on fine root length, highlighting the importance of the dynamics of cast maturation in root adaptation. Plant biomass production was affected by the interaction between the age and proportion of casts. A positive correlation between the 15N proportion in plant tissues and plant biomasses indicated that plants were more efficient in foraging N in casts than in the bulk soil.

Conclusions

Our results suggested that both a timely adaptation of the root system structure and a significant proportion of casts are necessary to observe a positive effect of casts on plant growth.
  相似文献   

15.

Background

The possibility of dietary ginger to enhance oxidative stress resistance and to extend life span was studied on Drosophila melanogaster.

Methods

Oxidative stress was induced by a reducing agent dithiothreitol. Experimental groups of male D. melanogaster were cultured on media containing: 1) no additive; 2) dithiothreitol, added into the nutritional mixture to the final concentration of 10 mM; 3) 25 mg of ginger powder g–1 of the nutritional mixture; and 4) 10 mM of dithiothreitol and 25 mg of ginger powder g–1 of the nutritional mixture. The number of alive fruit flies was inspected daily, and mean life span was determined for each experimental group.

Results

The addition of dithiothreitol to D. melanogaster nutritional mixture was established to result in an increase in concentration of two markers of oxidative stress conditions (thiobarbituric acid reactive substances as products of lipid peroxidation and carbonylated proteins as products of protein oxidation) in fly tissues. It was followed by significant reduction of mean life span and maximum life span of the last 10% of flies. Plant preparation, being added simultaneously with dithiothreitol, significantly diminished the negative effects of this xenobiotic. In conditions of additional stress load induced by hydrogen peroxide or high temperature, survival of insects treated with dithiothreitol on the background of ginger powder was the highest.

Conclusions

Thus, the presented data give the evidence that ginger preparations can reduce oxidative stress outcomes and significantly increase the life expectancy of fruit flies in stress conditions.
  相似文献   

16.

Purpose

End-of-life (EoL) recycling poses a challenge to many practitioners today due to the availability of different calculation approaches and the lack of scientific consensus, which is fueled by academic research and vested industry interests alike. One of the main challenges in EoL modeling is the credible calculation of the appropriate recycling credit in open-loop and closed-loop situations.

Methods

We believe that part of the challenge is caused by a lack of understanding of the underlying recycling paradigm, which refers to the meaning that is assigned to the recycling credit. Referred to as “system expansion through substitution” and “future displacement of primary production,” the two predominant paradigms are delineated from each other followed by a discussion of their remaining challenges.

Results and discussion

Based on these considerations, we propose a revised paradigm based on embodied burdens that is able to alleviate many of the most pressing issues associated with material recycling in attributional life cycle assessment.

Conclusions

With this discussion paper, we look forward to a productive and lively debate on the matter.
  相似文献   

17.

Background

Maximum parsimony phylogenetic tree reconciliation is an important technique for reconstructing the evolutionary histories of hosts and parasites, genes and species, and other interdependent pairs. Since the problem of finding temporally feasible maximum parsimony reconciliations is NP-complete, current methods use either exact algorithms with exponential worst-case running time or heuristics that do not guarantee optimal solutions.

Results

We offer an efficient new approach that begins with a potentially infeasible maximum parsimony reconciliation and iteratively “repairs” it until it becomes temporally feasible.

Conclusions

In a non-trivial number of cases, this approach finds solutions that are better than those found by the widely-used Jane heuristic.
  相似文献   

18.

Introduction

The pathogenicity at differing points along the aggregation pathway of many fibril-forming proteins associated with neurodegenerative diseases is unclear. Understanding the effect of different aggregation states of these proteins on cellular processes is essential to enhance understanding of diseases and provide future options for diagnosis and therapeutic intervention.

Objectives

To establish a robust method to probe the metabolic changes of neuronal cells and use it to monitor cellular response to challenge with three amyloidogenic proteins associated with neurodegenerative diseases in different aggregation states.

Method

Neuroblastoma SH-SY5Y cells were employed to design a robust routine system to perform a statistically rigorous NMR metabolomics study into cellular effects of sub-toxic levels of alpha-synuclein, amyloid-beta 40 and amyloid-beta 42 in monomeric, oligomeric and fibrillar conformations.

Results

This investigation developed a rigorous model to monitor intracellular metabolic profiles of neuronal cells through combination of existing methods. This model revealed eight key metabolites that are altered when neuroblastoma cells are challenged with proteins in different aggregation states. Metabolic pathways associated with lipid metabolism, neurotransmission and adaptation to oxidative stress and inflammation are the predominant contributors to the cellular variance and intracellular metabolite levels. The observed metabolite changes for monomer and oligomer challenge may represent cellular effort to counteract the pathogenicity of the challenge, whereas fibrillar challenge is indicative of system shutdown. This implies that although markers of stress are more prevalent under oligomeric challenge the fibrillar response suggests a more toxic environment.

Conclusion

This approach is applicable to any cell type that can be cultured in a laboratory (primary or cell line) as a method of investigating how protein challenge affects signalling pathways, providing additional understanding as to the role of protein aggregation in neurodegenerative disease initiation and progression.
  相似文献   

19.

Aims

Glucose-6-phosphate dehydrogenase (G6PDH) has been reported to be involved in resistance to various environmental stresses. However, the role of G6PDH in aluminum (Al) toxicity remains unclear.

Methods

Physiological and biochemical methods together with histochemical analysis were used to investigate the participation of G6PDH in Al-induced inhibition of root growth.

Results

Exposure to high Al concentration caused a significant increase in the activities of total and cytosolic G6PDH in roots of soybean. Al-induced inhibition of root growth and oxidative stress were alleviated by a G6PDH inhibitor. Reactive oxygen species (ROS) accumulation in Al-treated root apexes could be abolished by a NADPH oxidase inhibitor. Furthermore, treatment with a G6PDH inhibitor reduced NADPH content and NADPH oxidase activity in Al-treated root apexes. Further investigation demonstrates that nitric oxide (NO) mediates Al-induced increase in cytosolic G6PDH activity by modulating the expression of genes encoding cytosolic G6PDH. In addition, nitrate reductase pathway is mainly responsible for Al-induced NO production in root apexes.

Conclusions

These results indicate that NADPH produced by NO-modulated cytosolic G6PDH in root apexes is responsible for ROS accumulation mediated by NADPH oxidase under Al stress, subsequently suffering from oxidative stress and thus causing the inhibition of root elongation.
  相似文献   

20.

Background

Thoracic aortic dissection (TAD) is one of the most severe aortic diseases. The study aimed to explore the potential role of heat shock protein 27 (HSP27) in the pathogenesis of TAD using an in vitro model of oxidative stress in vascular smooth muscle cells (VSMCs).

Methods

HSP27 was analyzed in aortic surgical specimens from 12 patients with TAD and 8 healthy controls. A lentiviral vector was used to overexpress HSP27 in rat aortic VSMCs. Cell proliferation and apoptosis were measured under oxidative stress induced by H2O2.

Results

HSP27 expression was significantly higher in aortic tissue from patients with TAD and VSMCs in the aortic media were the main cell type producing HSP27. Elevated oxidative stress was also detected in the TAD samples. Overexpression of HSP27 significantly attenuated H2O2-induced inhibition of cell proliferation. Furthermore, HSP27 was found to decrease H2O2-induced cell apoptosis and oxidative stress.

Conclusions

These results suggest that HSP27 expression promotes VSMC viability, suppresses cell apoptosis, and confers protection against oxidative stress in TAD.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号