首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: This study aimed to assess the contamination risk of Escherichia coli in commercial lettuce grown under three different irrigation systems (overhead sprinkler, subsurface drip and surface furrow). Methods and Results: Three replicated field trials were conducted. In an initial trial, we consistently observed higher mesophilic bacteria counts under sprinkler irrigation but visual quality was found to be dependent on the water potential of leaves at harvest. Further, in the other two trials, E. coli K‐12 strains LMM1010 and ATCC 25253, was injected into the water stream of the different irrigation systems to determine survival in the field. Results showed that product samples were positive for E. coli up to 7 days when using sprinkler irrigation, whereas only one product sample was found positive for E. coli when using other irrigation methods. Survival of bacteria in soil persisted longer in furrow‐irrigated areas, ranging from an estimated 17 days in winter months to 5 days during the warmer summer periods. This finding combined with results from a parallel 3‐year survey of canal waters indicate that while highest risk of finding E. coli in irrigation water is in warmer months, the survival in soil is lower during the same time period. Conclusions: Our results in a study set under common commercial conditions confirmed the enhanced risk of E. coli contamination when using sprinkle irrigation. Furthermore, E. coli persistence in furrow‐irrigated soil validates the importance of an early irrigation termination for both sprinkler and furrow methods. Significance and Impact of the Study: Stringent monitoring and in‐field food safety controls should be emphasized during the last few days before harvest.  相似文献   

2.
Charcoal rot, caused by Macrophomina phaseolina, has become increasingly problematic for melon growers using subsurface drip irrigation in Arizona; but has rarely been observed in fields with furrow irrigation. Since the relationship between increasing incidence of charcoal rot on melon and irrigation type is unknown, studies were initiated to determine the effects of edaphic factors on inoculum density. Soil samples were collected once from fields irrigated by subsurface drip, with and without plastic mulch, and by furrow at 10, 20 and 30 cm depths. Samples were analysed for percentage soil moisture, pH, salinity and inoculum density. Percentage soil moisture was significantly higher at 20 and 30 cm depths in the furrow‐irrigated field compared with the drip‐irrigated field with plastic mulch, but not in the field without plastic mulch. Average minimum and maximum temperatures and inoculum density were significantly lower at all three depths in the furrow‐irrigated field compared with both types of drip irrigation. pH was significantly higher in the furrow‐irrigated field compared with both types of drip irrigation at 20 and 30 cm depths but not at 10 cm depth. Differences in inoculum densities of M. phaseolina suggest that drip irrigation may contribute to higher disease incidences.  相似文献   

3.
基于DSSAT模型对豫北地区夏玉米灌溉制度的优化模拟   总被引:3,自引:0,他引:3  
合理的灌溉制度是提高农业水资源利用效率、保证夏玉米高产稳产的前提。采用农业技术转化决策系统(DSSAT,Decision Support System for Agrotechno1ogy Transfer)探究了河南省北部地区夏玉米不同降水年型下的最优灌溉制度。经过参数的校正和验证,归一化均方根误差(nRMSE)、均方根误差(RMSE)和一致性指数(d)均表现出模拟值与实测值的吻合度很好,DSSAT-maize模型可以准确模拟夏玉米物候期、地上部分生物量、产量和土壤水分状况。然后基于模型模拟了不同灌溉处理下的夏玉米生产潜力,从而评估夏玉米缺水量,并对比分析不同生育时期灌水对产量的影响确定最优灌溉时期,综合考虑产量和水分利用效率确定最优灌溉制度。结果表明:夏玉米生长季的缺水量年际间差异显著,多年平均值为38.91 mm,波动范围为0—193.03 mm。在丰水年,不需要灌溉;在平水年,开花期灌水30 mm;在枯水年,开花期和灌浆期灌水50 mm;在特别干旱年,苗期、拔节期和开花期至少灌水180 mm。优化的灌溉制度下丰水年、平水年和枯水年的WUE达到最高且产量分别占其最高产量的100%、99.72%和97.89%,实现了作物高产节水协同提高的目标。  相似文献   

4.
辽河三角洲河口芦苇沼泽湿地植被固碳潜力   总被引:3,自引:1,他引:2       下载免费PDF全文
增加陆地生态系统碳汇是一种有效应对CO2浓度升高的措施。河口湿地是一类特殊的陆地生态系统,是生产力最高的生态系统之一。研究河口湿地的固碳潜力对准确评估河口湿地碳汇、发挥和提高湿地固碳功能具有重要意义。通过野外调查和数值模型,量化研究了辽河三角洲河口沼泽湿地的植被固碳潜力。根据区域的实际情况,将植被的固碳潜力分为湿地演替、人工灌溉苇田和气候变化的潜力。研究结果表明辽河三角洲河口沼泽湿地植被具有很高的固碳潜力,翅碱蓬(Suaeda pterantha)群落扩张每年可递增固碳潜力0.053—0.07Gg C,滩涂转变为芦苇(Phragmites australis)沼泽每年可递增固碳潜力0.07Gg C,芦苇、獐毛草甸(Aeluropus sinensis)演替为芦苇沼泽的固碳潜力为17.2 Gg C/a,通过灌溉管理措施,芦苇沼泽的固碳潜力为474.6—544.6 Gg C/a。根据未来气候变化情景和预测结果,到2030年、2050年、2100年,芦苇沼泽湿地的固碳潜力分别为576.9—655.1Gg C/a,603.3—684.1Gg C/a,680.9—769.4Gg C/a,其中由人工灌溉苇田的潜力最大。  相似文献   

5.
The semiarid regions of northwestern Venezuela have extremely low and highly unpredictable precipitation, yet these conditions support species with contrasting phenology and leaf longevity. Episodic rains significantly increased leaf water potential (from –5 to –2.5 MPa) in several species and, in some cases, triggered flowering, leading us to hypothesize that the coexistence of species with contrasting phenology is due to differences in their ability to utilize small rainfall events. Irrigation treatments were used to simulate brief rainfall events, and the response of three species (Erythrina velutina [deciduous], Croton heliaster [semideciduous], and Capparis odoratissima [evergreen]) was monitored over a period of 14 months. To partition the effects of water reaching the canopy versus the soil, irrigation was supplied either in the form of mist to the canopy or by minisprinklers near the base of the trees. Nonirrigated trees were used as controls. Productivity (estimated as aboveground litter production) and water potential were enhanced by soil irrigation in two species. However, in the evergreen species canopy irrigation had a greater effect on water relations and productivity than soil irrigation, as indicated by higher predawn water potential, higher total annual flower (40 g m–2 year–1) and fruit (5 g m–2 year–1) production, and longer leaf longevity (410 days in control trees versus 520 days in canopy-irrigated trees). Canopy irrigation augmented flower and fruit production in all three species. Our findings suggest that reproductive phenology in these species is driven by episodic rains and that evergreen species may sustain productivity by their ability to make use of water deposited on leaf surfaces.  相似文献   

6.
Improving productivity of maize (Zea mays L.) and water use efficiency is of great significance for agriculture in Ethiopia. In this study, the effects of ridge‐furrow with film mulch cultivation were tested on maize yields in Melkassa, Ethiopia. Three field experiments (drip irrigation, furrow irrigation and rainfed) were conducted each with randomised complete block design with three replicates. The drip irrigation experiment was conducted in the dry season and constituted three film mulch methods (non‐mulch, transparent film mulch and black film mulch) with three irrigation levels (357, 435 and 515 mm). The furrow irrigation experiment was also conducted in the dry season and constituted two film mulches (non‐mulch and transparent film mulch) with three irrigation levels (484, 674 and 865 mm). The rainfed experiment was conducted in the rainy season and constituted three mulches (non‐mulch, transparent film mulch and black film mulch) with two farming methods (ridge‐furrow farming and flat farming). In the drip irrigation experiment, the highest maize yields (5.9 ± 0.6 t ha?1) and irrigation water use efficiency (9.6 ± 1 kg ha?1 mm?1) were recorded in the treatment using black film mulch with high irrigation, with increases of 68% and 68.4% compared to using non‐mulch treatment at that irrigation level. In the furrow irrigation experiment, maize yields and irrigation water use efficiency reached 7 (± 0.8) t ha?1 and 9.1 (± 1.9) kg ha?1 mm?1 in the treatment using transparent film mulch with medium irrigation (674 mm), with increases of 46% and 46.8% compared to that with non‐mulch treatment. In the rainfed experiment, the film mulch rather than farming method had positive effects on the maize yields and rainwater use efficiency. The average maize yield reached 8.5 (± 0.7) t ha?1 in the film mulch treatments, with an increase of 39% than using the non‐mulch treatment. Compared with that of non‐mulch treatment, the net income in the film mulch treatments increased by 94% in the furrow experiment and 31% in the rainfed experiment. Our results indicate that the ridge‐furrow with film mulch system can be recommended for water‐saving irrigation with low cost in dry seasons, and film mulch with flat farming can be recommended in rainy seasons for maize production in Ethiopia. This study provides strong evidence that maize productivity can be effectively improved in Ethiopia and other similar areas of the world using this simple and cost‐effective technology.  相似文献   

7.
Recent Ross River virus activity prior to the onset of the wet season in the Kimberley region of Western Australia points to an increased dry season mosquito-borne disease risk at Kununurra, compared to other Kimberley towns. This study describes a preliminary investigation into the role of the Ord River Irrigation Area at Kununurra in mosquito production during the dry season. Specifically, the study sought to determine whether the irrigation area has provided the opportunity for year-round breeding of arbovirus vector mosquitoes. A 10-day adult and larval mosquito sampling survey, in August 2003, revealed that mosquito breeding was occurring during the driest month of the year at Kununurra, supporting the hypothesis that mosquitoes can breed year-round. Importantly, significantly larger numbers and percentage of adult Culex annulirostris, an important disease vector in Australia, were collected within the irrigation area (44.6% of total catch) compared to nearby reference (nonirrigated) breeding sites (9.8%) (mean difference 76.2 per trap per night; 95% CI 38.6, 113.7; P <0.001). Larval Cx. annulirostris were also collected at several sites within the irrigation area, whereas none were collected at reference sites. These results indicate that mosquito breeding associated with anthropogenic environmental changes may be responsible for an increased health risk at the end of the dry season. Mosquito management needs to be given a high priority to ensure this potential health risk is not further exacerbated. Several control strategies to reduce breeding of disease vector mosquitoes are identified, primarily focusing on modification of breeding habitats and alteration of irrigation protocols.  相似文献   

8.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   

9.
The incidence of vesicular-arbuscular mycorrhizae (VAM) in wastewater irrigated and non-irrigated oldfield soils in Michigan was studied. Soil and root samples were taken monthly from field plots on the second and third years of consecutive irrigation with municipal wastewater at rates of 0, 5 and 10 cm wk–1. The oldfield ecosystem contained a high VAM fungal spore population density, but low species diversity. The most common VAM fungal species were Glomus mosseae and G. fasciculatum. Both spore density and root colonization were higher in irrigated than in non-irrigated plots. Irrigation effects were largest early in the growing season. In addition to increasing VAM incidence, wastewater irrigation shifted VAM fungal species composition. Irrigation favored G. mosseae over G. fasciculatum. Bioassays using either Sorghum vulgare or Daucus carota, an oldfield native species, indicated that the VAM systems were still functioning after the third year of consecutive wastewater irrigation. The data from experiments using nutrient solutions at wastewater concentrations suggest that the effects of wastewater irrigation on VAM are due to the effects of both water and nutrients. Since VAM are a very important component of the plant's water and nutrient uptake system and equally important in structuring plant communities under limiting growth conditions, it is suggested that the stimulatory effect of wastewater irrigation on VAM in an oldfield ecosystem enhances the ecosystem's ability to function as a living filter for wastewater clean up.Michigan Agricultural Experimental Station Journal Article No 13137.On sabbatical leave from ESAL, Lavras-MG, Brazil  相似文献   

10.
李想  韩智博  张宝庆  高超  贺缠生 《生态学报》2021,41(8):3067-3077
科学的灌溉制度是干旱半干旱地区农业生产的重要保障。黑河位于西北干旱区,是我国第二大内陆河,且当地中游农业灌溉和下游生态需水矛盾十分突出。利用DSSAT (Decision Support for Agro-technology Transfer)模型模拟了黑河中游地区玉米、小麦、油菜、马铃薯的生长情况,对比分析了四种作物生育期内需水量变化与当地降水条件、现行灌溉制度之间的差异。通过设置灌溉组合探究了四种作物最适宜的灌溉制度,并计算了优化灌溉制度下的节水潜力。结果表明:DSSAT模型通过参数校正与验证后,对四种作物生长过程模拟性能较好,产量标准化均方根误差(nRMSE)均低于15.0%,决定系数(R2)均达到0.65以上。缺水量模拟结果表明,四种作物生长季平均水分亏缺介于122.5-367.0 mm。通过调整灌溉制度,可使玉米、小麦、油菜、马铃薯的水分利用效率分别提高54.8%、25.0%、18.3%和51.3%,且产量变幅均低于5.0%,实现了高产节水的目的。在研究区实施最优灌溉制度,中游农业灌区每年可以节省8.1×108 m3的水资源量,用于支持下游生态保护。  相似文献   

11.
Coniothyrium minitans, a mycoparasite with biocontrol activity against Sclerotinia sclerotiorum, was found to disperse during glasshouse trials where overhead irrigation was used. Consequently, the role of water splash in dispersal of C. minitans was investigated using soil-incorporated inoculum and a range of irrigation regimes found to occur in the glasshouse. The resulting inoculum deposition over horizontal distances up to 2 m was measured. Using drops < 6 mm diameter at 680 mm h-1, C. minitans was splash-dispersed at least 2.0 m, whereas with drops > 6 mm diameter at 30 mm h-1 it was dispersed to only 1.75 m. Irrigation with droplets < 1mm diameter at 49 mm h-1 failed to disperse inoculum beyond 0.5 m. The dispersal gradient produced by drops < 6 mm diameter at 680 mm h-1 was best described mathematically by the power function, whereas irrigation with drops > 6 mm diameter at 30 mm h- resulted in a gradient described well by power or exponential functions. The latter regime produced a significantly steeper gradient than irrigation with drops < 6 mm diameter at 680 mm h-1. C. minitans was isolated using an Andersen air sampler at concentrations of 2839 cfu m-3 or 22 cfu m-3 during irrigation with drops < 6 mm diameter at 680 mm h-1 or > 6 mm diameter at 30 mm h-1, respectively. After irrigation, deposition of C. minitans-canying aerosol particles declined exponentially and distance from source had no effect on the amount of inoculum isolated. Conidia of C. minitans, splash-dispersed by irrigation with drops < 6 mm diameter at 680 mm h-1 were able to infect sclerotia of S. sclerotiorum such that almost all sclerotia at 0.5 m from the inoculum source, and c. 50% of those at 2.0 m, became infected with the mycoparasite.  相似文献   

12.
选取同一地形、长势一致的毛竹林为材料,分析比较灌溉与不灌溉毛竹林冬笋外观品质(个体重量、最大直径、长度、可食率)、营养品质(淀粉、蛋白质、脂肪、可溶性糖、维生素C)、呈味物质(单宁、草酸)、纤维素类物质(纤维素、木质素)以及不同类氨基酸含量的差异,研究灌溉对毛竹冬笋品质的影响,为冬笋的科学培育提供依据。结果表明:(1)灌溉显著提高了毛竹冬笋的个体重量、最大直径、长度以及可食率(P<0.05)。(2)灌溉显著提高了毛竹冬笋的淀粉和维生素C含量,并显著降低了单宁、草酸、纤维素以及木质素含量(P<0.05),但对蛋白质、脂肪、可溶性糖等指标含量影响不显著。(3)灌溉显著提升了毛竹冬笋中必需氨基酸、半必需氨基酸、鲜味氨基酸的含量以及占比(P<0.05),但对甜味和苦味氨基酸总含量影响不显著。研究发现,灌溉改善了毛竹冬笋生长和外观品质,以及呈味物质、纤维素类物质、必需氨基酸、半必需氨基酸和鲜味氨基酸含量等营养品质指标,从而显著提升了冬笋品质。  相似文献   

13.
实验着重研究分根条件下常规灌溉、交替灌溉和固定灌溉玉米苗期根际硝态氮的分布, 研究结果表明不同灌水方式下,玉米根际硝态氮的分布不同.在这3种灌水方式的湿润区,NO-3-N的累积趋势为交替灌水>固定灌水>常规灌水.  相似文献   

14.
A system was developed for monitoring the potential spread of Phytophthora cryptogea root rot of the hardy nursery stock (HNS) species Chamaecyparis lawsoniana, Erica x darlyensis and Calluna vulgaris in recirculating irrigation water on semi-commercial scale production beds. The spread of disease was monitored by measurements of symptoms and by baiting bioassays. A range of baits was tested and the most sensitive was found to be shoot segments of Lupinus angustifolius. The pathogen spread rapidly throughout the system from infected plants in the recirculating irrigation water. Although the percentage of plants infected was high (in Chamaecyparis 73% in 1994 and 93% in 1995), the percentage of infections actively sporulating at any one sample date was much less (47% in 1994 and 63% in 1995) and shoot symptoms were even less evident (in Chamaecyparis 22% in 1994 and 38% in 1995). In Chamaecyparis the incidence of shoot symptoms was less than expected from results of inoculations of similar plants not irrigated with recirculated water (80% infected, 60% with symptoms). The reason for this difference is not known but it poses a serious threat to the quality of HNS produced using recirculated irrigation water and underlines the need for reliable pathogen control methods.  相似文献   

15.
刘梅先  杨劲松  李晓明  余美  王进 《生态学杂志》2011,22(12):3203-3210
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明: 从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450 mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

16.
王海青  田育红  黄薇霖  肖随丽 《生态学报》2015,35(10):3225-3232
人工草地建设是缓解内蒙古地区草地生存压力的必要途径,而水分短缺是该区人工草地建设中牧草生长的主要限制因素,适量的人工补水以实现牧草的高产节水是解决这一问题的关键。以当地主要牧草冰草和紫花苜蓿为研究对象,开展单播和混播条件下不同灌溉量对牧草产量、光合性能和水分利用效率影响的对比试验。研究结果表明:(1)豆禾混播有利于提高冰草和紫花苜蓿的产量;(2)8月初现蕾期是冰草和紫花苜蓿收割的最佳季节,此时牧草产量最高;(3)灌溉量达到田间持水量的45%(包含降雨量在内的单位面积灌溉量在7月初达到903.8 m3/hm2,在8月初达到1812.4 m3/hm2)是牧草高产节水的最佳补水选择;(4)6—8月水分胁迫更有利于提高牧草的长期水分利用效率(long-term water use efficiency,WUEL),开花期后补水对提高牧草WUEL的作用开始显著;(5)在牧草产量最高的8月初水分胁迫更有利于提高牧草的瞬时水分利用效率(instantaneous water use efficiency,WUEI),而在7月初光照强烈、水分蒸发量大时,较多地补水更有利于提高牧草的WUEI。  相似文献   

17.
A major irrigation system in the Lower Valley of the Rió Negro, Argentina, has been invaded by aquatic plants, with Potamogeton illinoensis Morong dominant in irrigation channels and Potamogeton pectinatus L. dominant in drainage channels. Although several other macrophytes are present, problems are largely caused by the dominant species. Results are presented for plant biomass response to weed control treatments using a chain-cutting method in the principal irrigation channel of the system. Peak above-ground biomass of Potamogeton illinoensis was reduced by about 38% by this physical control regime. The treated populations regrew rapidly after spring clearance, but did not regrow after subsequent mid- and late-season clearance operations, even though untreated population biomass remained high during this period. The highest density of Potamogeton illinoensis ramets was found in treated areas. Chain- cutting produced no discernible effect on dissolved oxygen, water temperature, water conductivity, pH or light extinction coefficient compared with untreated check sectors of the channel.  相似文献   

18.
气候变化背景下松嫩平原玉米灌溉需水量估算及预测   总被引:2,自引:0,他引:2  
黄志刚  肖烨  张国  曹云  彭保发 《生态学报》2017,37(7):2368-2381
开展农作物需水规律研究对于干旱半干旱区域旱作物节水灌溉和水分管理实践具有重要意义。以松嫩平原玉米为研究对象,研究玉米生育期需水量规律及灌溉需水量。结果表明:(1)历史时期和未来气候变化情景下,松嫩平原玉米全生育期和L~(mid)时段灌溉需水量等值线沿西南—东北方向递减,其中全生育期和L~(mid)时段2000s灌溉需水量临界等势线(灌溉需水量为0的等势线)分别比1970s北移70.2km和53.4km,全生育期和L~(mid)时段2040s灌溉需水量临界等势线分别比2010s北移30.9km和55.2km。(2)历史时期和气候变化情景下玉米全生育期灌溉需水量随年代呈波动增加趋势,其中前者以29.1mm/(10a)速度增加,后者以17.5mm/(10a)速度增加。(3)未来温度和降雨量变化对玉米需水量的贡献率为波动上升趋势,与1970s相比,2000s温度和降雨量变化对玉米需水量的贡献率为22.1%,增加6.8亿m~3灌溉水量;2040s温度和降雨量变化对玉米需水量的贡献率为38.3%,增加12.6亿m~3灌溉水量。  相似文献   

19.
为减少油松定植后的死亡率,在控制成本的基础上促进油松良好生长,该研究采用裂区实验设计方法,选取三个灌溉水平与三个园林废弃物有机肥施用量进行比较试验,通过测定油松树高、胸径、叶绿素及叶片养分含量指标探究灌溉和施用有机肥对油松林木生长的影响。结果表明:灌溉可以显著提高油松在胸径、树高、生理等方面的生长指标,树高和胸径在中水灌溉(A2)下的促进效果甚至高于高水灌溉(A3);试验处理1 a后,施肥对油松的生长影响显著,但三个施肥水平间的差异不显著;灌溉与施用有机肥之间不存在显著交互作用。综上可知,施肥和灌溉对油松的生长会产生显著的促进作用,从施肥和灌溉的效果并综合资源利用效率的角度考虑,少量施用有机肥,并以80 L·(10天·株·次)-1的灌水量在生长季(4月—9月)进行滴灌是较为经济、有效的油松生态林管护措施。  相似文献   

20.
张作合  张忠学 《生态学报》2021,41(11):4586-4595
为揭示不同灌溉模式下水稻植株生长与水分消耗利用,通过蒸渗仪与田间小区结合的方法,以常规淹灌模式作为对比,研究了三种灌溉模式的水稻植株生长与水分消耗利用。试验结果表明:水稻植株体通过水分的自我调解来适应稻田生态系统变化,灌溉模式对水稻植株各器官的湿基含水率产生显著影响(P<0.05),控制灌溉模式能够有效地延缓水稻生育后期的根系衰老;作为水分的载体,水稻植株干物质积累量直接影响水稻的耗水量,控制灌溉模式下稻田生态系统的水稻耗水量较间歇灌溉和常规淹灌都有大幅度的降低,而水分利用效率大幅度提高;控制灌溉模式可以通过生长补偿效应来增加后期干物质的积累,从而提高籽粒产量。根据各灌溉模式水稻的腾发量结合实际降雨量,来调控稻田灌溉水量,能够有效地维持SPAC稻田生态系统平衡,保证农业和生态系统的可持续发展。研究结果可为寒地黑土区稻田生态系统水分消耗利用研究提供理论依据和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号