首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNAi mechanisms and applications   总被引:19,自引:0,他引:19  
Kim D  Rossi J 《BioTechniques》2008,44(5):613-616
Within the past two decades we have become increasingly aware of the roles that RNAs play in regulation of gene expression. The RNA world was given a booster shot with the discovery of RNA interference (RNAi), a compendium of mechanisms involving small RNAs (less than 30 bases long) that regulate the expression of genes in a variety of eukaryotic organisms. Rapid progress in our understanding of RNAi-based mechanisms has led to applications of this powerful process in studies of gene function as well as in therapeutic applications for the treatment of disease. RNAi-based therapies involve two-dimensional drug designs using only identification of good Watson-Crick base pairing between the RNAi guide strand and the target, thereby resulting in rapid design and testing of RNAi triggers. To date there are several clinical trials using RNAi, and we should expect the list of new applications to grow at a phenomenal rate. This article summarizes our current knowledge about the mechanisms and applications of RNAi.  相似文献   

2.
RNA interference (RNAi) is an ancient and evolutionarily conserved process. In some eukaryotes, RNAi silences parasitic genetic elements. In plants, RNAi serves as an immune system against RNA viruses and transgenes and in worms, RNAi silences transposons. In mammals, RNAi has yet unknown functions. However, emerging roles for short RNAs and the factors that interact with them in other eukaryotes include chromatin modification, DNA deletion and DNA methylation, which may provide clues to the roles for short RNA function in mammals. For example, antigen receptor expression in lymphocytes is a highly regulated process and although much is known about chromatin modification and DNA deletion in the immune system, several molecular details of chromatin regulation remain elusive. This review compares emerging roles for short RNA function to processes required for antigen receptor expression in mammalian lymphocytes and predicts that short RNAs direct events required for successful lymphocyte-restricted gene expression.  相似文献   

3.
4.
5.
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.  相似文献   

6.
7.
Biochemical mechanisms of suppression of RNA interference by plant viruses   总被引:1,自引:0,他引:1  
RNA interference (RNAi) plays an important biological role in regulation of gene expression of eukaryotes. In addition, RNAi was shown to be an adaptive protective molecular immune mechanism against viral diseases. Antiviral RNAi initiates from generation of short interfering RNAs used in the subsequent recognition and degradation of the viral RNA molecules. As a response to protective reaction of plants, most of the viruses encode specific proteins able to counteract RNAi. This process is known as RNAi suppression. Viral suppressors act on various stages of RNAi and have biochemical properties that enable viruses to effectively counteract the protective system of plants. Modern molecular and biochemical investigations of a number of viral suppressors have significantly expanded our understanding of the complexity of the nature of RNAi suppression as well as mechanisms of interaction between viruses and plants.  相似文献   

8.
RNA interference (RNAi) and adenosine to inosine conversion are both mechanisms that respond to double-stranded RNA (dsRNA) and have been suggested to have antiviral roles. RNAi involves processing of dsRNA to short interfering RNAs (siRNAs), which subsequently mediate degradation of the cognate mRNAs. Deamination of adenosines changes the coding capacity of the RNA, as inosine is decoded as guanosine, and alters the structure because A–U base pairs are replaced by I•U wobble pairs. Here we show that RNAi is inhibited if the triggering dsRNA is first deaminated by ADAR2. Moreover, we show that production of siRNAs is progressively inhibited with increasing deamination and that this is sufficient to explain the inhibition of RNAi upon hyper-editing of dsRNAs.  相似文献   

9.
10.
Epigenetic information can be inherited over multiple generations, which is termed as transgenerational epigenetic inheritance (TEI). Although the mechanism(s) of TEI remains poorly understood, noncoding RNAs have been demonstrated to play important roles in TEI. In many eukaryotes, double‐stranded RNA (dsRNA) triggers the silencing of cellular nucleic acids that exhibit sequence homology to the dsRNA via a process termed RNA interference (RNAi). In Caenorhabditis elegans, dsRNA‐directed gene silencing is heritable and can persist for a number of generations after its initial induction. During the process, small RNAs and the RNAi machinery mediate the initiation, transmission and re‐establishment of the gene silencing state. In this review, we summarise our current understanding of the underlying mechanism(s) of transgenerational inheritance of RNAi in C. elegans and propose that multiple RNAi machineries may act cooperatively to promote TEI.  相似文献   

11.
Inputs and outputs for chromatin-targeted RNAi   总被引:1,自引:0,他引:1  
Plant gene silencing is targeted to transposons and repeated sequences by small RNAs from the RNA interference (RNAi) pathway. Like classical RNAi, RNA-directed chromatin silencing involves the cleavage of double-stranded RNA by Dicer endonucleases to create small interfering RNAs (siRNAs), which bind to the Argonaute protein. The production of double-stranded RNA (dsRNA) must be carefully controlled to prevent inappropriate silencing. A plant-specific RNA polymerase IV (Pol IV) initiates siRNA production at silent heterochromatin, but Pol IV-independent mechanisms for making dsRNA also exist. Downstream of siRNA biogenesis, multiple chromatin marks might be targeted by Argonaute-siRNA complexes, yet mechanisms of chromatin modification remain poorly understood. Genomic studies of siRNA target loci promise to reveal novel biological functions for chromatin-targeted RNAi.  相似文献   

12.
长链非编码RNA的作用机制及其研究方法   总被引:2,自引:0,他引:2  
夏天  肖丙秀  郭俊明 《遗传》2013,35(3):269-280
长链非编码RNA(Long non-coding RNA, lncRNA)通过多种机制发挥其生物学功能, 这些机制包括基因印记、染色质重塑、细胞周期调控、剪接调控、mRNA降解和翻译调控等。lncRNA通过这些作用机制在不同水平进行基因表达调控。在研究lncRNA功能的过程中, 研究方法的建立和应用起着非常重要的作用。目前用于lncRNA研究的主要方法有:微阵列、转录组测序、Northern印迹、实时荧光定量逆转录-聚合酶链反应、荧光原位杂交、RNA干扰和RNA结合蛋白免疫沉淀等。文章着重介绍了3种前沿方法, 即:在线快速预测RNA与蛋白质相互作用的catRAPID、RNA纯化的染色质分离(Chromatin isolation by RNA purification, ChIRP)以及非编码RNA沉默与定位分析技术(Combined knockdown and localization analysis of non-coding RNAs, c-KLAN)。  相似文献   

13.
RNA interference (RNAi) is triggered by double-stranded RNA helices that have been introduced exogenously into cells as small interfering (si)RNAs or that have been produced endogenously from small non-coding RNAs known as microRNAs (miRNAs). RNAi has become a standard experimental tool and its therapeutic potential is being aggressively harnessed. Understanding the structure and function of small RNAs, such as siRNAs and miRNAs, that trigger RNAi has shed light on the RNAi machinery. In particular, it has highlighted the assembly and function of the RNA-induced silencing complex (RISC), and has provided guidelines to efficiently silence genes for biological research and therapeutic applications of RNAi.  相似文献   

14.
RNAi mechanisms in Caenorhabditis elegans   总被引:5,自引:0,他引:5  
Grishok A 《FEBS letters》2005,579(26):5932-5939
  相似文献   

15.
RNA interference: biology, mechanism, and applications.   总被引:44,自引:0,他引:44  
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

16.
RNA Interference: Biology, Mechanism, and Applications   总被引:16,自引:0,他引:16       下载免费PDF全文
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

17.
18.
RNA turnover and chromatin-dependent gene silencing   总被引:1,自引:0,他引:1  
Marc Bühler 《Chromosoma》2009,118(2):141-151
  相似文献   

19.
20.
Suppression of RNA interference by adenovirus virus-associated RNA   总被引:13,自引:0,他引:13       下载免费PDF全文
We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3' strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号