首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.  相似文献   

2.
Prostate-specific membrane antigen (PSMA) is a notable biomarker for diagnostic and therapeutic applications in prostate cancer. Gold nanoparticles (AuNPs) provide an attractive nanomaterial platform for combining a variety of targeting, imaging, and cytotoxic agents into a unified device for biomedical research. In this study, we present the generation and evaluation of the first AuNP system functionalized with a small molecule phosphoramidate peptidomimetic inhibitor for the targeted delivery to PSMA-expressing prostate cancer cells. The general approach involved the conjugation of streptavidin-coated AuNPs with a biotin-linked PSMA inhibitor (CTT54) to generate PSMA-targeted AuNPs. In vitro evaluations of these targeted AuNPs were conducted to determine PSMA-mediated and time-dependent binding to PSMA-positive LNCaP cells. The PSMA-targeted AuNPs exhibited significantly higher and selective binding to LNCaP cells compared to control non-targeted AuNPs, thus demonstrating the feasibility of this approach.  相似文献   

3.
Gold nanoparticles (AuNPs) possess considerable biocompatibility and therefore gaining more attention for their biomedical applications. Previous studies have shown the transient increase in pro-inflammatory cytokines expression in different organs of rats and mice exposed to AuNPs. Structural changes in the spleen of mice treated with AuNPs have also been reported. This investigation was aimed to study the immunostaining of IL-1β, IL-6 and TNF-α in mice treated with different sizes of AuNPs. The animals were divided into 7 groups of 4 animals in each group. One group received saline and served as control. Two sets of three groups were treated with 5 nm, 20 nm and 50 nm diameter AuNPs. One set was sacrificed on day 1 and the other on day 7 following the AuNPs injections. Spleens were dissected out and promptly fixed in formalin for 3 days and then processed for IL-1β, IL-6 and TNF-α immunostaining using target-specific antibodies. The immunoreactivities of IL-1β and IL-6 were increased with the increase of AuNP size. The immunostaining of IL-1β in spleen of 20 nm AuNP treated mice was subsequently decreased on day 7 whereas it persisted in 50 nm AuNP group. The increase in the immunoreactivity of IL-6 on day 1 was decreased on day 7 in the spleens of mice treated with 20 nm or 50 nm AuNPs. The immunostaining of TNF-α was found to be negative in all the treatment groups. In conclusion, the size of AuNPs plays an important role in the expression of proinflammatory cytokines in mouse spleen; small size (5 nm) AuNPs caused minimal effect, whereas larger (50 nm) AuNPs produced intense immunostaining.  相似文献   

4.
Zhang Y  Hong H  Engle JW  Bean J  Yang Y  Leigh BR  Barnhart TE  Cai W 《PloS one》2011,6(12):e28005
Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-labeled TRC105 (a chimeric mAb that binds to both human and murine CD105), through two commonly used chelators: 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Flow cytometry analysis confirmed that chelator conjugation of TRC105 did not affect its CD105 binding affinity or specificity. PET imaging and biodistribution studies in 4T1 murine breast tumor-bearing mice revealed that (64)Cu-NOTA-TRC105 exhibited better stability than (64)Cu-DOTA-TRC105 in vivo, which resulted in significantly lower liver uptake without compromising the tumor targeting efficiency. In conclusion, this study confirmed that NOTA is a superior chelator to DOTA for PET imaging with (64)Cu-labeled TRC105.  相似文献   

5.
Chitosan (CS), a kind of naturally produced polysaccharide with extraordinary biocompatibility and biodegradation, shows much potential to act as reducing and stabilizing agent in the synthesis of gold nanoparticles (AuNPs) for drug delivery. To solve the poor solubility and expand the pharmaceutical applications of CS, various CS derivatives through rational design have been developed and further used to prepare, stabilize, and mediate self-assembling of gold materials. Herein, we chose sulfonic chitosan as a stabilizing reagent for the synthesis of highly stable AuNPs (AuNP/SCSs) with diameters of about 3 nm. For investigating their surface electronic payload of charged drugs, the negatively charged fluorescence isothiocyanate (FITC) and positively charged Rhodamine B (Rb) were used as models to be modified on the surface of the AuNP/SCSs via a layer-by-layer (LbL) method. With a basis of the fluorescence resonance energy transfer (FRET) principle, via adjusting the distance between AuNPs and fluorescent molecules by tuning the layers of charged polymers, the regulation of the fluorescence intensity of the fluorescent molecules has been achieved. In addition, the drug loading efficiency was investigated.  相似文献   

6.
Gold nanoparticles are recently having much attention because of their increased applications in biomedical fields. In this paper, we demonstrated the photothermal efficacy of citrate capped gold nanoparticles (AuNPs) for the destruction of A431 cancer cells. Citrate capped AuNPs were synthesized successfully and characterized by UV–visible–NIR spectrophotometry and High Resolution Transmission Electron Microscopy (HR-TEM). Further, AuNPs were conjugated with epidermal growth factor receptor antibody (anti-EGFR) and applied for the selective photothermal therapy (PTT) of human epithelial cancer cells, A431. PTT experiments were conducted in four groups, Group I—control cells, Group II—cells treated with laser light alone, Group III—cells treated with unconjugated AuNP and further laser irradiation and Group IV—anti-EGFR conjugated AuNP treated cells irradiated by laser light. After laser irradiation, cell morphology changes that were examined using phase contrast microscopy along with the relevant biochemical parameters like lactate dehydrogenase activity, reactive oxygen species generation and caspase-3 activity were studied for all the groups to determine whether cell death occurs due to necrosis or apoptosis. From these results we concluded that, these immunotargeted nanoparticles could selectively induce cell death via ROS mediated apoptosis when cells were exposed to a low power laser light.  相似文献   

7.
8.
Subclinical acute kidney injury (subAKI) is characterized by tubule-interstitial injury without significant changes in glomerular function. SubAKI is associated with the pathogenesis and progression of acute and chronic kidney diseases. Currently, therapeutic strategies to treat subAKI are limited. The use of gold nanoparticles (AuNPs) has shown promising benefits in different models of diseases. However, their possible effects on subAKI are still unknown. Here, we investigated the effects of AuNPs on a mouse model of subAKI. Animals with subAKI showed increased functional and histopathologic markers of tubular injury. There were no changes in glomerular function and structure. The animals with subAKI also presented an inflammatory profile demonstrated by activation of Th1 and Th17 cells in the renal cortex. This phenotype was associated with decreased megalin-mediated albumin endocytosis and expression of proximal tubular megalin. AuNP treatment prevented tubule-interstitial injury induced by subAKI. This effect was associated with a shift to an anti-inflammatory Th2 response. Furthermore, AuNP treatment preserved megalin-mediated albumin endocytosis in vivo and in vitro. AuNPs were not nephrotoxic in healthy mice. These results suggest that AuNPs have a protective effect in the tubule-interstitial injury observed in subAKI, highlighting a promising strategy as a future antiproteinuric treatment.  相似文献   

9.
We have designed new nanoprobes applicable for both positron emission tomography (PET) and optical fluorescence in vivo imaging. Fluorine-18, which is commonly used for clinical imaging, has been coupled to phospholipid quantum dot (QD) micelles. This probe was injected in mice and we demonstrated that its dynamic quantitative whole body biodistribution and pharmacokinetics could be monitored using PET as well as the kinetics of their cellular uptake using in vivo fibered confocal fluorescence imaging. Phospholipid micelle encapsulation of QDs provides a highly versatile surface chemistry to conjugate multiple chemicals and biomolecules with controlled QD:molecule valency. Here, we show that, in contrast with several previous studies using other QD polymer coatings, these phospholipid QD micelles exhibit long circulation half-time in the bloodstream (on the order of 2 h) and slow uptake by reticulo-endothelial system.  相似文献   

10.
The aim of the present study was to develop a 68Ga labeled bis-DOTA derivative of benzylidene-bis-indole and compare the in vivo stability and biodistribution with that of the previously reported bis-DTPA derivate for in vivo imaging of necrosis using PET. Uptake of the tracer was evaluated in a mouse model of Fas-mediated hepatic apoptosis in correlation with histochemical stainings. The novel 68Ga labeled tracer showed an improved in vivo stability and could therefore be used for selective non-invasive imaging of necrotic cell death using PET.  相似文献   

11.
Mixed self-assembled monolayers (MSAMs) composed of diverse ligands offer a mechanism for the specific binding of biomolecules onto solid surfaces. In this study, we examined the formation of MSAMs on gold nanoparticles (AuNPs) and the immobilization of hexa-arginine-tagged esterase (Arg6-esterase) on the surfaces of the resulting particles. The functionalization of AuNPs with MSAMs was achieved by introducing a mixture of tethering and shielding ligands into an AuNP solution. The formation of self-assembled monolayers (SAMs) on the AuNP surface was characterized by UV/visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Arg6-esterase was immobilized in a highly specific manner onto AuNPs treated with mixed SAMs (MSAM–AuNPs) by providing a shielding ligand which reduce the non-specific adsorption of enzymes caused by hydrophobic interaction compared to AuNPs treated with single-component SAMs (SSAM–AuNPs). Moreover, Arg6-esterase immobilized on MSAM–AuNPs showed substantially enhanced catalytic activity up to an original activity compared to that on SSAM–AuNPs (58%).  相似文献   

12.
Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.  相似文献   

13.
Solid lipid nanoparticles (SLNs) are submicrometer (1-1000 nm) colloidal carriers developed in the past decade as an alternative system to traditional carriers (emulsions, liposomes, and polymeric nanoparticles) for intravenous applications. Because of their potential as drug carriers, there is much interest in understanding the in vivo biodistribution of SLNs following intravenous (i.v.) injection. Positron emission tomography (PET) is an attractive method for investigating biodistribution but requires a radiolabeled compound. In this work, we describe a method to radiolabel SLN for in vivo PET studies. A copper specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N',N'-tetraacetic acid (BAT), conjugated with a synthetic lipid, was incorporated into the SLN. Following incubation with (64)CuCl(2) for 1 h at 25 °C in 0.1 M NH(4)OAc buffer (pH 5.5), the SLNs (~150 nm) were successfully radiolabeled with (64)Cu (66.5% radiolabeling yield), exhibiting >95% radiolabeled particles following purification. The (64)Cu-SLNs were delivered intravenously to mice and imaged with PET at 0.5, 3, 20, and 48 h post injection. Gamma counting was utilized post imaging to confirm organ distributions. Tissue radioactivity (% injected dose/gram, %ID/g), obtained by quantitative analysis of the images, suggests that the (64)Cu-SLNs are circulating in the bloodstream after 3 h (blood half-life ~1.4 h), but are almost entirely cleared by 48 h. PET and gamma counting demonstrate that approximately 5-7%ID/g (64)Cu-SLNs remain in the liver at 48 h post injection. Stability assays confirm that copper remains associated with the SLN over the 48 h time period and that the biodistribution patterns observed are not from free, dissociated copper. Our results indicate that SLNs can be radiolabeled with (64)Cu, and their biodistribution can be quantitatively evaluated by in vivo PET imaging and ex vivo gamma counting.  相似文献   

14.
Despite their large secretome and wide applications in bioprocesses, fungi remain underexplored in metal nanoparticles (MNP) biosynthesis. Previous studies have shown that cell surface proteins of Rhizopus oryzae play a crucial role in biomineralization of Au(III) to produce gold nanoparticles (AuNPs). Therefore, it is hypothesized that purified cell surface protein may produce in vitro AuNPs with narrow size distribution for biomedical and biocatalytic applications. However, different protein extraction methods might affect protein stability and the AuNP biosynthesis process. Herein, we have explored the extraction of cell surface proteins from R. oryzae using common detergents and reducing agent (sodium dodecyl sulfate (SDS) Triton X-100, and 1,4-dithiothreitol (DTT)) and their effect on the size and shape of the biosynthetic AuNPs. The surface proteins extracted with reducing agent (DTT) and non-ionic detergent (Triton X-100) produce spherical AuNPs with a mean particle size of 16 ± 7 nm, and 19 ± 4 nm, respectively, while the AuNPs produced by the surface protein extracted by ionic detergent (SDS) are flower-like AuNPs with broader size distribution of 43 ± 19 nm. This synthetic approach does not require use of any harsh chemicals, multistep preparation and separation process, favouring environmental sustainability. The biosynthetic AuNPs thus formed, are stable in different physiological buffers and hemocompatible, making them suitable for biomedical applications.  相似文献   

15.
Kim JH  Yeom JH  Ko JJ  Han MS  Lee K  Na SY  Bae J 《Journal of biotechnology》2011,155(3):287-292
MicroRNAs (miRNAs) are gaining recognition as essential regulators involved in many biological processes, and they are emerging as therapeutic targets for treating disease. Here, we introduce a method for effective delivery of anti-miRNA oligonucleotides (AMOs) using functionalized gold nanoparticles (AuNPs). To demonstrate the ability of AMOs to silence miRNA, we selected miR-29b, which is known to downregulate myeloid cell leukemia-1 (MCL-1), a factor responsible for promoting cell survival. We first generated AuNPs coated with cargo DNA, which was then coupled to complementary DNA linked to an antisense miR-29b sequence. When the AuNPs were delivered into HeLa cells, MCL-1 protein and mRNA levels were increased significantly. Furthermore, apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was inhibited, proving that AMOs targeting miR-29b were effectively delivered by our innovative AuNP. In addition, we provided evidence that AuNP could deliver other AMOs against miR-21 into two independent cell lines, KGN and 293T, suggesting that the AuNP conjugates can be versatile for any AMO and cell type.  相似文献   

16.

Objectives

Gold nanoparticles (AuNPs) of 21 nm have been previously well characterized in vitro for their capacity to target macrophages via active uptake. However, the short-term impact of such AuNPs on physiological systems, in particular resident macrophages located in fat tissue in vivo, is largely unknown. This project investigated the distribution, organ toxicity and changes in inflammatory cytokines within the adipose tissue after mice were exposed to AuNPs.

Methods

Male C57BL/6 mice were injected intraperitoneally (IP) with a single dose of AuNPs (7.85 μg AuNPs/g). Body weight and energy intake were recorded daily. Tissues were collected at 1 h, 24 h and 72 h post-injection to test for organ toxicity. AuNP distribution was examined using electron microscopy. Proinflammatory cytokine expression and macrophage number within the abdominal fat pad were determined using real-time PCR.

Results

At 72 hours post AuNP injection, daily energy intake and body weight were found to be similar between Control and AuNP treated mice. However, fat mass was significantly smaller in AuNP-treated mice. Following IP injection, AuNPs rapidly accumulated within the abdominal fat tissue and some were seen in the liver. A reduction in TNFα and IL-6 mRNA levels in the fat were observed from 1 h to 72 h post AuNP injection, with no observable changes in macrophage number. There was no detectable toxicity to vital organs (liver and kidney).

Conclusion

Our 21 nm spherical AuNPs caused no measurable organ or cell toxicity in mice, but were correlated with significant fat loss and inhibition of inflammatory effects. With the growing incidence of obesity and obesity-related diseases, our findings offer a new avenue for the potential development of gold nanoparticles as a therapeutic agent in the treatment of such disorders.  相似文献   

17.

Background

Gold nanoparticles (AuNPs) have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis.

Results

In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs) production. Stable, monodisperse AuNP formation with around 10?nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy.

Conclusion

The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of AuNP synthesis by marine bacteria.  相似文献   

18.
Nanoparticles (NPs) have emerged as a potential tool to improve cancer treatment. Among the proposed uses in imaging and therapy, their use as a drug delivery scaffold has been extensively highlighted. However, there are still some controversial points which need a deeper understanding before clinical application can occur. Here the use of gold nanoparticles (AuNPs) to detoxify the antitumoral agent cisplatin, linked to a nanoparticle via a pH-sensitive coordination bond for endosomal release, is presented. The NP conjugate design has important effects on pharmacokinetics, conjugate evolution and biodistribution and results in an absence of observed toxicity. Besides, AuNPs present unique opportunities as drug delivery scaffolds due to their size and surface tunability. Here we show that cisplatin-induced toxicity is clearly reduced without affecting the therapeutic benefits in mice models. The NPs not only act as carriers, but also protect the drug from deactivation by plasma proteins until conjugates are internalized in cells and cisplatin is released. Additionally, the possibility to track the drug (Pt) and vehicle (Au) separately as a function of organ and time enables a better understanding of how nanocarriers are processed by the organism.  相似文献   

19.
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system.  相似文献   

20.
A novel DNA detection method is presented based on a gold nanoparticle (AuNP) colorimetric assay and hybridization chain reaction (HCR). In this method, target DNA hybridized with probe DNA modified on AuNP, and triggered HCR. The resulting HCR products with a large number of negative charges significantly enhanced the stability of AuNPs, inhibiting aggregation of AuNPs at an elevated salt concentration. The approach was highly sensitive and selective. Using this enzyme-free and isothermal signal amplification method, we were able to detect target DNA at concentrations as low as 0.5 nM with the naked eye. Our method also has great potential for detecting other analytes, such as metal ions, proteins, and small molecules, if the target analytes could make HCR products attach to AuNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号