首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.  相似文献   

2.
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.  相似文献   

3.
The endoplasmic reticulum-localized non-receptor protein-tyrosine phosphatase 1B (PTP1B) is associated with oncogenic, metabolic, and cytokine-related signaling and functionally targets multiple receptor tyrosine kinases (RTKs) for dephosphorylation. Loss of PTP1B activity leads to enhanced ligand-dependent biological activity of the Met RTK among others. Here, we demonstrate that knockdown of PTP1B or expression of a PTP1B trapping aspartic acid-to-alanine substitution (D/A) mutant delayed ligand-induced degradation of the Met and EGF RTKs. Loss of PTP1B function abrogated trafficking of Met and EGF receptor to Rab5- and phosphatidylinositol 3-phosphate (Pl3P)-positive early endosomes and subsequent trafficking through the degradative pathway. Under these conditions, internalization of the Met and EGF receptors was unaltered, suggesting a block at the level of early endosome formation. We show that the N-ethylmaleimide-sensitive factor (NSF), an essential component of the vesicle fusion machinery, was hyperphosphorylated in PTP1B knockdown or PTP1B D/A-expressing cells and was a target for PTP1B. NSF knockdown phenocopied PTP1B knockdown, demonstrating a mechanism through which PTP1B regulates endocytic trafficking. Finally, we show that PTP1B dephosphorylated NSF and that this interaction was required for physiological RTK trafficking and appropriate attenuation of downstream signaling.  相似文献   

4.
Protein tyrosine phosphorylation is one of the major post-translational modifications in eukaryotic cells and represents a critical regulatory mechanism of a wide variety of signaling pathways. Aberrant protein tyrosine phosphorylation has been linked to various diseases, including metabolic disorders and cancer. Few years ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors, able to block the signals emanating from receptor tyrosine kinases. However, recent evidence demonstrates that misregulation of PTPs activity plays a critical role in cancer development and progression. Here, we will focus on PTP1B, an enzyme that has been linked to the development of type 2 diabetes and obesity through the regulation of insulin and leptin signaling, and with a promoting role in the development of different types of cancer through the activation of several pro-survival signaling pathways. In this review, we discuss the molecular aspects that support the crucial role of PTP1B in different cellular processes underlying diabetes, obesity and cancer progression, and its visualization as a promising therapeutic target.  相似文献   

5.
Protein tyrosine phosphorylation is a ubiquitous, fundamental biochemical mechanism that regulates essential eukaryotic cellular functions. The level of tyrosine phosphorylation of specific proteins is finely tuned by the dynamic balance between protein tyrosine kinase and protein tyrosine phosphatase activities. Hepatocyte growth factor receptor (also known as Met), a receptor protein tyrosine kinase, is a major regulator of proliferation, migration, and survival for many epithelial cell types. We report here that receptor-type protein tyrosine phosphatase β (RPTP-β) specifically dephosphorylates Met and thereby regulates its function. Expression of RPTP-β, but not other RPTP family members or catalytically inactive forms of RPTP-β, reduces hepatocyte growth factor (HGF)-stimulated Met tyrosine phosphorylation in HEK293 cells. Expression of RPTP-β in primary human keratinocytes reduces both basal and HGF-induced Met phosphorylation at tyrosine 1356 and inhibits downstream MEK1/2 and Erk activation. Furthermore, shRNA-mediated knockdown of endogenous RPTP-β increases basal and HGF-stimulated Met phosphorylation at tyrosine 1356 in primary human keratinocytes. Purified RPTP-β intracellular domain preferentially dephosphorylates purified Met at tyrosine 1356 in vitro. In addition, the substrate-trapping mutant of RPTP-β specifically interacts with Met in intact cells. Expression of RPTP-β in human primary keratinocytes reduces HGF induction of VEGF expression, proliferation, and motility. Taken together, the above data indicate that RPTP-β is a key regulator of Met function.  相似文献   

6.
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.  相似文献   

7.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.  相似文献   

8.
The biological functions of the neuregulin 1 (NRG1) and ERBB4 genes have received much recent attention due to several studies showing associations between these genes and schizophrenia. Moreover, reduced forebrain dendritic spine density is a consistent feature of schizophrenia. It is thus important to understand the mechanisms whereby NRG1 and erbB4 modulate spine morphogenesis. Here, we show that long‐term incubation with NRG1 increases both spine size and density in cortical pyramidal neurons. NRG1 also enhances the content of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptors in spines. Knockdown of ERBB4 expression prevented the effects of NRG1 on spine size, but not on spine density. The effects of NRG1 and erbB4 on spines were mediated by the RacGEF kalirin, a well‐characterized regulator of dendritic spines. Finally, we show that environmental enrichment, known to promote spine growth, robustly enhances the levels of erbB4 protein in the forebrain. These findings provide a mechanistic link between NRG1 signaling and spine morphogenesis.

  相似文献   


9.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.  相似文献   

10.
PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.  相似文献   

11.
Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153-160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits beta1-integrin activity in neuronal cells. Supporting a functional role for beta1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing beta1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.  相似文献   

12.
13.
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.  相似文献   

14.
Intracellular signaling proteins are very often regulated by site-specific phosphorylation. For example, growth factor receptors in eukaryotic cells contain intrinsic tyrosine kinase activity and use inter- and intra-molecular interactions to recruit and orient potential protein substrates for phosphorylation. Equally important in determining the magnitude and kinetics of such a response is protein dephosphorylation, catalysed by phosphatase enzymes. A growing body of evidence indicates that certain protein tyrosine phosphatases (PTPs), like tyrosine kinases, are affected by intermolecular interactions that alter the specific activity or localization of their catalytic domains. Using a detailed kinetic modeling framework, we theoretically explore the regulation of PTPs through their association with receptor tyrosine kinases, as noted for the Src homology 2-domain-containing PTPs, SHP-1 and -2. Receptor-PTP binding, in turn, is expected to influence the phosphorylation pattern of those receptors and proteins they associate with, and we show how PTPs might serve to co- or counter-regulate parallel pathways in a signaling network.  相似文献   

15.
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third-leading cause of cancer death worldwide. Nilotinib is an orally available receptor tyrosine kinase inhibitor approved for chronic myelogenous leukemia. This study investigated the effect of nilotinib on HCC. Nilotinib did not induce cellular apoptosis. Instead, staining with acridine orange and microtubule-associated protein 1 light chain 3 revealed that nilotinib induced autophagy in a dose- and time-dependent manner in HCC cell lines, including PLC5, Huh-7, and Hep3B. Moreover, nilotinib up-regulated the phosphryaltion of AMP-activated kinase (AMPK) and protein phosphatase PP2A inactivation were detected after nilotinib treatment. Up-regulating PP2A activity suppressed nilotinib-induced AMPK phosphorylation and autophagy, suggesting that PP2A mediates the effect of nilotinib on AMPK phosphorylation and autophagy. Our data indicate that nilotinib-induced AMPK activation is mediated by PP2A, and AMPK activation and subsequent autophagy might be a major mechanism of action of nilotinib. Growth of PLC5 tumor xenografts in BALB/c nude mice was inhibited by daily oral treatment with nilotinib. Western blot analysis showed both increased phospho-AMPK expression and decreased PP2A activity in vivo. Together, our results reveal that nilotinib induces autophagy, but not apoptosis in HCC, and that the autophagy-inducing activity is associated with PP2A-regulated AMPK phosphorylation.  相似文献   

16.
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.  相似文献   

17.
Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase Cγ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two- and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.  相似文献   

18.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

19.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

20.
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号