首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropometric measurements made on 470 individual children (age 0–18 years) from a seminomadic population of Datoga pastoralists living in northern Tanzania were used to describe patterns of child growth. Comparisons with reference growth curves derived from American samples suggest that pastoral Datoga children grow poorly in this region. Body compositional changes with age differed markedly from the reference population. There were negligible fat gains through childhood, even among females. Comparison with data on other East African pastoralists showed that population growth performance is intermediate between that of nomadic and settled pastoralists. Little catch-up growth occurs during childhood, and adolescence appears to be delayed among males. The results contribute to the growing database on health indicators for African pastoralists and suggest a need for further research to investigate mechanisms for growth stunting in these populations. Am J Phys Anthropol 109:187–209, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
Adult stature variation is commonly attributed to differential stress-levels during development. However, due to selective mortality and heterogeneous frailty, a population's tall stature may be more indicative of high selective pressures than of positive life conditions. This article examines stature in a biocultural context and draws parallels between bioarchaeological and living populations to explore the multidimensionality of stature variation in the past. This study investigates: 1) stature differences between archaeological populations exposed to low or high stress (inferred from skeletal indicators); 2) similarities in growth retardation patterns between archaeological and living groups; and 3) the apportionment of variance in growth outcomes at the regional level in archaeological and living populations. Anatomical stature estimates were examined in relation to skeletal stress indicators (cribra orbitalia, porotic hyperostosis, linear enamel hypoplasia) in two medieval bioarchaeological populations. Stature and biocultural information were gathered for comparative living samples from South America. Results indicate 1) significant (P < 0.01) differences in stature between groups exposed to different levels of skeletal stress; 2) greater prevalence of stunting among living groups, with similar patterns in socially stratified archaeological and modern groups; and 3) a degree of regional variance in growth outcomes consistent with that observed for highly selected traits. The relationship between early stress and growth is confounded by several factors—including catch-up growth, cultural buffering, and social inequality. The interpretations of early life conditions based on the relationship between stress and stature should be advanced with caution. Am J Phys Anthropol 155:229–242, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.

Background

The World Health Organization (WHO) released new Child Growth Standards in 2006 to replace the current National Center for Health Statistics (NCHS) growth reference. We assessed how switching from the NCHS to the newly released WHO Growth Standards affects the estimated prevalence of wasting, underweight and stunting, and the pattern of risk factors identified.

Methodology/Principal Findings

Data were drawn from a village-informant driven Demographic Surveillance System in Northern Malawi. Children (n = 1328) were visited twice at 0–4 months and 11–15 months. Data were collected on the demographic and socio-economic environment of the child, health history, maternal and child anthropometry and child feeding practices. Weight-for-length, weight-for-age and length-for-age were derived in z-scores using the two growth references. In early infancy, prevalence estimates were 2.9, 6.1, and 8.5 fold higher for stunting, underweight, and wasting respectively using the WHO standards compared to NCHS reference (p<0.001 for all). At one year, prevalence estimates for wasting and stunting did not differ significantly according to reference used, but the prevalence of underweight was half that with the NCHS reference (p<0.001). Patterns of risk factors were similar with the two growth references for all outcomes at one year although the strength of association was higher with WHO standards.

Conclusions/Significance

Differences in prevalence estimates differed in magnitude but not direction from previous studies. The scale of these differences depends on the population''s nutritional status thus it should not be assumed a priori. The increase in estimated prevalence of wasting in early infancy has implications for feeding programs targeting lactating mothers and ante-natal multiple micronutrients supplementation to tackle small birth size. Risk factors identified using WHO standards remain comparable with findings based on the NCHS reference in similar settings. Further research should aim to identify whether the young infants additionally diagnosed as malnourished by this new standard are more appropriate targets for interventions than those identified with the NCHS reference.  相似文献   

4.
Several methods for stature estimation have been proposed over the years. Among these methods is anatomical reconstruction, regression based on long bone lengths, and measuring skeletal vertex - talus length in the grave for individuals buried in a supine position. Recent studies have dealt with the applicability of skeletal length in the grave (Petersen: Int J Osteoarchaeol 15 (2005) 106-114) and anatomical reconstruction (Raxter et al.: Am J Phys Anthropol 130 (2006) 374-384). The results from the latter study calls into question the results of the former study. Therefore an investigation of the potential bias of using skeletal length in the grave as an estimate of living stature has been performed. Twenty Medieval Danish skeletons were measured both in situ and in the laboratory, and the anatomically reconstructed stature (Raxter et al.: Am J Phys Anthropol 130 (2006) 374-384) was compared with the skeletal length in the grave. The results show that 2.5 cm should be added to skeletal length in the grave in order to obtain an unbiased estimate ofliving stature.  相似文献   

5.
Osteological studies both old and new have utilized various Polynesian cranial samples, individually or in combination, to assess the racial composition of prehistoric Polynesians as a group, with regards to other Pacific populations, or to represent the Polynesian peoples as a whole in various multivariate analyses of worldwide populations. However, few of these studies have assessed the degree of intrasample variation produced when data derived from skeletal samples from different Polynesian islands (populations) are pooled to represent "Polynesians" as a whole. A similar argument can be made when data derived from various museum skeletal samples of the same Polynesian population are pooled to produce a larger sample representing that particular Polynesian population (Murrill [1968] Cranial and postcranial skeletal remains from Easter Island; Minneapolis: University of Minnesota Press; Stefan [2002] Am. J. Phys. Anthropol. [Suppl.] 34:147). This study examined Easter Island crania curated at various museums in North America, South America, and Europe to assess whether significant differences exist among the museum collections of Rapa Nui (Easter Island) skeletal material. A NORM statistical program (Schafer and Olsen [1997] NORM, version 1.01; University Park: Pennsylvania State University) for multiple imputation of incomplete multivariate datasets was utilized to estimate missing data. A variance comparison method, which utilizes variance/covariance matrices derived from "hypothesis" and "baseline/reference" samples (Key and Jantz [1990] Hum. Evol. 5:457-469; Key and Jantz [1990] Am. J. Phys. Anthropol. 82:53-59) was used to compare the Rapa Nui museum samples. This method is designed to test whether variability in a "hypothesis" museum sample exceeds "normal within-group variability" represented by the "baseline/reference" sample. The method was applied to six Rapa Nui museum samples (AANMW, MNHN-KB, MNHN-NAE, NHM, MH, and AMNH). The results indicate that the museum "hypothesis," male and female samples, exhibited little intrasample variability from the "baseline/reference" sample (MAPSE), though the samples were collected at different times and by different individuals. These results show the ability of multiple imputation and variance comparison methodologies to predict missing variables while maintaining the inherent variance/covariance structure and to discriminate sample variation in artificially assembled samples.  相似文献   

6.
In two historic longitudinal growth studies, Moorrees et al. (Am J Phys Anthropol 21 (1963) 99-108; J Dent Res 42 (1963) 1490-1502) presented the "mean attainment age" for stages of tooth development for 10 permanent tooth types and three deciduous tooth types. These findings were presented graphically to assess the rate of tooth formation in living children and to age immature skeletal remains. Despite being widely cited, these graphical data are difficult to implement because there are no accompanying numerical values for the parameters underlying the growth data. This analysis generates numerical parameters from the data reported by Moorrees et al. by digitizing 358 points from these tooth formation graphs using DataThief III, version 1.5. Following the original methods, the digitized points for each age transition were conception-corrected and converted to the logarithmic scale to determine a median attainment age for each dental formation stage. These values are subsequently used to estimate age-at-death distributions for immature individuals using a single tooth or multiple teeth, including estimates for 41 immature early modern humans and 25 immature Neandertals. Within-tooth variance is calculated for each age estimate based on a single tooth, and a between-tooth component of variance is calculated for age estimates based on two or more teeth to account for the increase in precision that comes from using additional teeth. Finally, we calculate the relative probability of observing a particular dental formation sequence given known-age reference information and demonstrate its value in estimating age for immature fossil specimens.  相似文献   

7.
Stunting, or linear growth retardation, has been documented in up to half of all children in rural indigenous populations of South America. Stunting is well understood as a signal of adverse conditions during growth, and has been associated with developmentally induced modifications to body composition, including body fat and muscularity, that stem from early growth restriction. This article examines the relation between short stature and three anthropometric indicators of body composition during childhood and adolescence among a rural, indigenous population of forager‐horticulturalists. Anthropometric data were collected annually from 483 Tsimane' youth, ages 2–10 years, in 13 communities in the Beni region of Bolivia for 6 consecutive years (2002–2007). Baseline height‐for‐age was used to indicate stunting (HAZ < ?2.0) and compared with z‐scores of body mass index (BMI), sum of two skinfolds, and arm muscle area. Multilevel regression models indicate baseline stunting is associated with lower BMI z‐scores (B = ?0.386; P < 0.001), body fatness (ZSkinfold, B = ?0.164; P < 0.001), and arm muscularity (AMAZ, B = ?0.580; P < 0.001) in youth across a period of 6 years. When split by sex, there was a stronger relation between baseline stunting and lower skinfold body fat scores among girls (B = ?0.244; P < 0.001) than boys (B = ?0.080; P = 0.087). In contrast, baseline stunting was associated with lower arm muscularity in both girls (B = ?0.498; P < 0.001) and boys (B = ?0.646; P < 0.001). The relation between linear growth restriction and indicators of body composition persist into adolescence, providing additional insight into the influence of adverse conditions during growth. Am J Phys Anthropol 153:92–102, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The study of juvenile skeletal remains can yield important insights into the health, behavior, and biological relationships of past populations. However, most studies of past skeletal growth have been limited to relatively simple metrics. Considering additional skeletal parameters and taking a broader physiological perspective can provide a more complete assessment of growth patterns and environmental and genetic effects on those patterns. We review here some alternative approaches to ontogenetic studies of archaeological and paleontological skeletal material, including analyses of body size (stature and body mass) and cortical bone structure of long bone diaphyses and the mandibular corpus. Together such analyses can shed new light on both systemic and localized influences on bone growth, and the metabolic and mechanical factors underlying variation in growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Estimates of the chronological age for animals of unknown age provide useful information for medical, demographic, and evolutionary studies. Skeletal development, as indicated by epiphyseal closure, can be used to estimate an animal's chronological age or specify its stage of development. Many studies of Primate skeletal development have used animals of unknown age, with the order of epiphyseal closure providing a relative age for each animal. This study examines the age of epiphyseal closure at 22 epiphyseal sites using animals of known age at death in three calitrichid species (Saguinus fuscicollis, Saguinus oedipus, and Callithrix jacchus). The observed average age of epiphyseal closure is similar in these tamarins and marmosets. There is a significant difference in rate of development between the species. Regression equations can predict the age of unknown animals to within 4.8 months for S. fuscicollis, 8.6 months for S. oedipus, and 7.6 months for C. jacchus (twice the standard error of the estimate). These age estimates allow us to determine if an animal is relatively mature or immature, but are largely unacceptable for studies in which precise age estimates are necessary. The order of epiphyseal closure is similar across 11 monkey species (using additional data from published literature) and supports the suggestion of a general pattern in Primate skeletal development. Am. J. Primatol. 41:129–139, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The assessment of age‐at‐death in non‐adult skeletal remains is under constant review. However, in many past societies an individual's physical maturation may have been more important in social terms than their exact age, particularly during the period of adolescence. In a recent article (Shapland and Lewis: Am J Phys Anthropol 151 (2013) 302–310) highlighted a set of dental and skeletal indicators that may be useful in mapping the progress of the pubertal growth spurt. This article presents a further skeletal indicator of adolescent development commonly used by modern clinicians: cervical vertebrae maturation (CVM). This method is applied to a collection of 594 adolescents from the medieval cemetery of St. Mary Spital, London. Analysis reveals a potential delay in ages of attainment of the later CVM stages compared with modern adolescents, presumably reflecting negative environmental conditions for growth and development. The data gathered on CVM is compared to other skeletal indicators of pubertal maturity and long bone growth from this site to ascertain the usefulness of this method on archaeological collections. Am J Phys Anthropol 153:144–153, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Trotter and Gleser's (Trotter and Gleser: Am J Phys Anthropol 10 (1952) 469-514; Trotter and Gleser: Am J Phys Anthropol 16 (1958) 79-123) long bone formulae for US Blacks or derivations thereof (Robins and Shute: Hum Evol 1 (1986) 313-324) have been previously used to estimate the stature of ancient Egyptians. However, limb length to stature proportions differ between human populations; consequently, the most accurate mathematical stature estimates will be obtained when the population being examined is as similar as possible in proportions to the population used to create the equations. The purpose of this study was to create new stature regression formulae based on direct reconstructions of stature in ancient Egyptians and assess their accuracy in comparison to other stature estimation methods. We also compare Egyptian body proportions to those of modern American Blacks and Whites. Living stature estimates were derived using a revised Fully anatomical method (Raxter et al.: Am J Phys Anthropol 130 (2006) 374-384). Long bone stature regression equations were then derived for each sex. Our results confirm that, although ancient Egyptians are closer in body proportion to modern American Blacks than they are to American Whites, proportions in Blacks and Egyptians are not identical. The newly generated Egyptian-based stature regression formulae have standard errors of estimate of 1.9-4.2 cm. All mean directional differences are less than 0.4% compared to anatomically estimated stature, while results using previous formulae are more variable, with mean directional biases varying between 0.2% and 1.1%, tibial and radial estimates being the most biased. There is no evidence for significant variation in proportions among temporal or social groupings; thus, the new formulae may be broadly applicable to ancient Egyptian remains.  相似文献   

12.
The Ganga Plain of North India provides an archaeological and skeletal record of semi‐nomadic Holocene foragers in association with an aceramic Mesolithic culture. Prior estimates of stature for Mesolithic Lake Cultures (MLC) used inappropriate equations from an American White reference group and need revision. Attention is given to intralimb body proportions and geo‐climatic provenance of MLC series in considering the most suitable reference population. Regression equations from ancient Egyptians are used in reconstructing stature for MLC skeletal series from Damdama (DDM), Mahadaha (MDH), and Sarai Nahar Rai (SNR). Mean stature is estimated at between 174 (MDH) and 178 cm (DDM and SNR) for males, and between 163 cm (MDH) and 179 cm (SNR) for females. Stature estimates based on ancient Egyptian equations are significantly shorter (from 3.5 to 7.1 cm shorter in males; from 3.2 to 7.5 cm shorter in females) than estimates using the American White reference group. Revised stature estimates from tibia length and from femur + tibia more accurately estimate MLC stature for two reasons: a) these elements are highly correlated with stature and have lower standard estimates of error, and b) uncertainty regarding methods of measuring tibia length is avoided. When compared with Holocene samples of native Americans and Mesolithic Europeans, MLC series from North India are tall. This aspect of their biological variation confirms earlier assessments and results from the synergistic influence of balanced nutrition from broad‐spectrum foraging, body‐proportions adapted to a seasonally hot and arid climate, and the functional demands of a mobile, semi‐nomadic life‐style. Am J Phys Anthropol 153:408–416, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Studies of skeletal development frequently document populational incidences of bilateral asymmetry. Degenerative morphological skeletal changes, attributed to age related and irregular ossification, may also progress asymmetrically, either as the result of asymmetric biomechanical factors expressed over the lifespan, asymmetric expression of physiological processes, or progressive magnification of asymmetry acquired previously during development. This study illustrates the effects of bilateral asymmetry on age at death estimates obtained from human skeletal remains. The Suchey‐Brooks method, which uses the pubic symphyseal face for age estimation (Katz and Suchey, Am J Phys Anthropol 69 1986 427–435), was selected for the study based on its widespread use. Asymmetry in the Suchey‐Brooks symphyseal age phases was found in over 60% of a sample composed of 20th century White male individuals from 18 to 86 years of age (N = 130). However, results suggest that the presence of asymmetry does not compromise the accuracy of the Suchey‐Brooks method if the morphologically older symphyseal face of an asymmetric individual is used to estimate age at death. In addition, weak directional asymmetry and a correlation between age and asymmetry were found. This suggests that a comparison of asymmetry in this area with that in other skeletal areas, where the factors originating and influencing asymmetry are better understood, may be useful in better understanding the biological processes which underlie the age markers used in the Suchey‐Brooks method. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The ancestors of modern Metazoa were constructed in large part by the foldings and distortions of two-dimensional sheets of epithelial cells. This changed approximately 600 million years ago with the evolution of mesenchymal cells. These cells arise as the result of epithelial cell delamination through a reprogramming process called an epithelial to mesenchymal transition (EMT) [Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2003;120:1351-83; Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42]. Because mesenchymal cells are free to migrate through the body cavity, the evolution of the mesenchyme opened up new avenues for morphological plasticity, as cells evolved the ability to take up new positions within the embryo and to participate in novel cell-cell interactions; forming new types of internal tissues and organs such as muscle and bone [Thiery JP, Sleeman, JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. After migrating to a suitable site, mesenchymal cells coalesce and re-polarize to form secondary epithelia, in a so-called mesenchymal-epithelial transition (MET). Such switches between mesenchymal and epithelial states are a frequent feature of Metazoan gastrulation [Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90] and the neural crest lineage [Duband JL, Monier F, Delannet M, Newgreen D. Epitheliu-mmesenchyme transition during neural crest development. Acta Anat 1995;154:63-78]. Significantly, however, when hijacked during the development of cancer, the ability of cells to undergo EMT, to leave the primary tumor and to undergo MET at secondary sites can have devastating consequences on the organism, allowing tumor cells derived from epithelia to invade surrounding tissues and spread through the host [Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42; Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678-90]. Thus, the molecular and cellular mechanisms underpinning EMT are both an essential feature of Metazoan development and an important area of biomedical research. In this review, we discuss the common molecular and cellular mechanisms involved in EMT in both cases.  相似文献   

15.
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) “independently estimated” body surface areas and “independently estimated” body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when “independently estimated” surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between “heat-adapted” and “cold-adapted” populations. As expected, the “cold-adapted” group has significantly more of its body surface area and volume in its trunk than does the “heat-adapted” group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. Am J Phys Anthropol 156:614–624, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Skeletal growth is explored between Early Neolithic (EN) (8000 to 6800 BP) and Late Neolithic (LN) (6000 to 5200 BP) foragers from the Cis‐Baikal region of Eastern Siberia. Previous studies suggest that increased systemic stress and smaller adult body size characterize the EN compared to LN. On this basis, greater evidence for stunting and wasting is expected in the EN compared to LN. Skeletal growth parameters assessed here include femoral and tibial lengths, estimated stature and body mass, femoral midshaft cortical thickness, total bone thickness, and medullary width. Forward selection was used to fit polynomial lines to each skeletal growth parameter relative to dental age in the pooled samples, and standardized residuals were compared between groups using t tests. Standardized residuals of body mass and femoral length were significantly lower in the EN compared to LN sample, particularly from late infancy through early adolescence. However, no significant differences in the standardized residuals for cortical thickness, medullary width, total bone thickness, tibial length, or stature were found between the groups. Age ranges for stunting in femoral length and wasting in body mass are consistent with environmental perturbations experienced at the cessation of breast feeding and general resource insecurity in the EN compared to LN sample. Differences in relative femoral but not tibial length may be associated with age‐specific variation in growth‐acceleration for the distal and proximal limb segments. Similarity in cortical bone growth between the two samples may reflect the combined influences of systemic and mechanical factors on this parameter. Am J Phys Anthropol 153:377–386, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Stature reconstructions from skeletal remains are usually obtained through regression equations based on the relationship between height and limb bone length. Different equations have been employed to reconstruct stature in skeletal samples, but this is the first study to provide a systematic analysis of the reliability of the different methods for Italian historical samples. Aims of this article are: 1) to analyze the reliability of different regression methods to estimate stature for populations living in Central Italy from the Iron Age to Medieval times; 2) to search for trends in stature over this time period by applying the most reliable regression method. Long bone measurements were collected from 1,021 individuals (560 males, 461 females), from 66 archeological sites for males and 54 for females. Three time periods were identified: Iron Age, Roman period, and Medieval period. To determine the most appropriate equation to reconstruct stature the Delta parameter of Gini (Memorie di metodologia statistica. Milano: Giuffre A. 1939), in which stature estimates derived from different limb bones are compared, was employed. The equations proposed by Pearson (Philos Trans R Soc London 192 (1899) 169-244) and Trotter and Gleser for Afro-Americans (Am J Phys Anthropol 10 (1952) 463-514; Am J Phys Anthropol 47 (1977) 355-356) provided the most consistent estimates when applied to our sample. We then used the equation by Pearson for further analyses. Results indicate a reduction in stature in the transition from the Iron Age to the Roman period, and a subsequent increase in the transition from the Roman period to the Medieval period. Changes of limb lengths over time were more pronounced in the distal than in the proximal elements in both limbs.  相似文献   

18.
This set of cross‐sectional and longitudinal data from children and young adults in certain Bougainville and Solomon Islands populations undergoing rapid modernization during the period 1966–1986 reveals very different responses to essentially the same stimuli—the introduction and widespread availability of western dietary items and reductions in habitual activity. Our analyses of over 2,000 children and young adults first measured in 1966–1972, with follow‐up surveys in 1968–1970 and 1985–1986, show changes in overweight/obesity in these communities have their onset around puberty, and are not related to differences in childhood growth stunting. The prevalence of overweight and obesity increased substantially during the period of this study among young adults, particularly women, and in groups with more Polynesian affinities, where the frequency of overweight (BMI ≥ 25) tripled over this 20‐year interval. However, the BMI of the more Papuan groups on Bougainville remained remarkably stable, even though they were close to the epicenter of modernization during this period, the Bougainville Copper Mine. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The immune activation that occurs with infection diverts energy from growth and can contribute to poor nutritional outcomes in developing infants and children. This study investigates the association between salivary immunoglobulin A (IgA) levels and growth outcomes among Ariaal infants of northern Kenya. The Ariaal are a group of settled northern Kenyan pastoralists who are under considerable nutritional stress. Two hundred and thirty‐nine breastfeeding Ariaal infants were recruited into the study and underwent anthropometric measurement and saliva collection, with mothers providing individual and household characteristics for them via questionnaire. Infant saliva samples were analyzed with an ELISA for IgA in the United States. Infant anthropometric measurements were converted to height‐for‐age z‐scores (HAZ) using the WHO Child Growth Standards. Based on multivariate models performed in SAS 9.2 two main results emerge: 1) low HAZ, an indicator of chronic undernutrition, was significantly associated with higher IgA concentration (β = ?0.12, P = 0.050) and 2) boys had significantly higher IgA levels than girls (β = 0.25, P = 0.039). Although there was not a significant interactive effect between HAZ and sex, the two variables confound each other, with boys having significantly lower HAZ values than girls do. In addition, maternal breastmilk IgA was significantly associated with infant salivary IgA, indicating that maternal effects play a role in infant IgA development. Future research will unravel the three‐way association between sex, stunting, and immune function in the Ariaal community. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

20.
Ecological factors can be important to shape the patterns of morphological variation among human populations. Particularly, diet plays a fundamental role in craniofacial variation due to both the effect of the nutritional status—mostly dependent on the type and amount of nutrients consumed—on skeletal growth and the localized effects of masticatory forces. We examine these two dimensions of diet and evaluate their influence on morphological diversification of human populations from southern South America during the late Holocene. Cranial morphology was measured as 3D coordinates defining the face, base and vault. Size, form, and shape variables were obtained for 474 adult individuals coming from 12 samples. Diet composition was inferred from carious lesions and δ13C data, whereas bite forces were estimated using traits of main jaw muscles. The spatial structure of the morphological and ecological variables was measured using correlograms. The influence of diet composition and bite force on morphometric variation was estimated by a spatial regression model. Cranial variation and diet composition display a geographical structure, while no geographical pattern was observed in bite forces. Cranial variation in size and form is significantly associated with diet composition, suggesting a strong effect of systemic factors on cranial growth. Conversely, bite forces do not contribute significantly to the pattern of morphological variation among the samples analyzed. Overall, these results show that an association between diet composition and hardness cannot be assumed, and highlight the complex relationship between morphological diversification and diet in human populations. Am J Phys Anthropol 155:114–127, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号