首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which antagonist peptides inhibit T cell responses is unknown. Mice deficient in Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1) have revealed its importance in the negative regulation of lymphocyte signaling. We investigated a possible role for SHP-1 in T cell antagonism and demonstrate, for the first time, a substantial increase in SHP-1 activity during antagonism of CD4(+) T cells. Furthermore, the removal of functional SHP-1 prevents antagonism in these cells. Our data demonstrate that T cell antagonism occurs via a negative intracellular signal that is mediated by SHP-1.  相似文献   

2.
TNF-alpha converting enzyme (TACE) is the protease responsible for processing proTNF from the 26-kDa membrane-anchored precursor to the secreted 17-kDa TNF-alpha. We show here that a deletion mutant of TACE (dTACE), lacking the pro and catalytic domains of the protease, acts as a dominant negative for proTNF processing in transfected HEK293 cells. We used the same system to test the effect of dTACE on TNFRII processing. Overexpression of dTACE with TNFRII resulted in >80% inhibition of TNFRII shedding. Although significant inhibition of TNF-alpha and TNFRII shedding was achieved with dTACE, we could not detect a cell surface accumulation of the noncleaved substrates above that observed in the absence of dTACE. Our results suggest that TNFRII is a substrate for TACE, and that dTACE is capable of interfering with the function of endogenous TACE, either by binding and sequestering TACE substrates via the disintegrin domain, transmembrane domain, or cytoplasmic tail, or by some other mechanism that has yet to be determined.  相似文献   

3.
4.
Mouse CD4(+)Vbeta5(+) T cells recognize a peripherally expressed superantigen encoded by an endogenous retrovirus. Ag encounter tolerizes the mature CD4 T cell compartment, either by deletion of autoreactive cells or by TCR revision. This latter process is driven by TCRbeta rearrangement through RAG activity and results in the rescue of cells expressing novel TCRs that no longer recognize the tolerogen. Consistent with the notion that revising T cells represent a distinct peripheral T cell population, we now show that these lymphocyte blasts express a hybrid effector/memory phenotype and are not undergoing cell division. A population of revising T cells is CD40(+), expresses the germinal center (GC) marker CXCR5, and is Vbeta5(low)Thy-1(low). Histology reveals that, consistent with their surface Ag phenotype, T cells undergoing TCR revision are enriched in splenic GCs. These data demonstrate that TCR revision is a multistep tolerance pathway supported by the unique microenvironment provided by GCs.  相似文献   

5.
TCR antagonists are altered T cell epitopes that specifically inactivate T cells. Commonly, they are derived from agonists by amino acid side chain replacement at positions accessible to the TCR. In this paper we report for the first time that a main chain N-hydroxylation, which is not exposed at the surface of the MHC peptide complex, renders an agonist into an antagonist. These mimotopes are a new, yet undescribed class of TCR antagonists. The antagonists are about 100 times more potent than an unrelated peptide that competes for binding to the MHC molecule. The novel main chain modification enhances biostability and maintains side chain constitution and thus opens new prospects for the use of TCR antagonists in the treatment of pathological immune reactions.  相似文献   

6.
Recent studies suggest that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays a critical role in the maintenance of self-tolerance. Using T cell-specific PTEN knockout mice (PTENDeltaT), we have identified a novel mechanism by which PTEN regulates T cell tolerance. We found that TCR stimulation alone, without CD28 costimulation, is sufficient to induce hyperactivation of the PI3K pathway, which leads to enhanced IL-2 production by naive PTENDeltaT T cells. Importantly, as a result of this increased response to TCR stimulation, PTENDeltaT CD4(+) T cells no longer require CD28 costimulation for in vitro or in vivo expansion. In fact, unlike wild-type T cells, PTENDeltaT CD4(+) T cells are not anergized by delivery of TCR stimulation alone. These data suggest that by negatively regulating TCR signals, PTEN imposes a requirement for CD28 costimulation, thus defining a novel mechanism for its role in self-tolerance.  相似文献   

7.
Superantigens are known to activate a large number of T cells. The SAg is presented by MHC class II on the APC and its classical feature is that it recognizes the variable region of the beta-chain of the TCR. In this article, we report, by direct binding studies, that staphylococcal enterotoxin (SE) H (SEH), a bacterial SAg secreted by Staphylococcus aureus, instead recognizes the variable alpha-chain (TRAV27) of TCR. Furthermore, we show that different SAgs (e.g., SEH and SEA) can simultaneously bind to one TCR by binding the alpha-chain and the beta-chain, respectively. Theoretical three-dimensional models of the penta complexes are presented. Hence, these findings open up a new dimension of the biology of the staphylococcal enterotoxins.  相似文献   

8.
TNFR-associated factor 2 (TRAF2) is an adapter protein that links several members of the TNFR family to downstream signaling pathways. Mice expressing a dominant negative form of TRAF2 in their lymphoid cells (TRAF2.DN mice) have a profound defect in T cell responses to allogeneic APC. In contrast, APC from wild-type or TRAF2.DN mice show an equivalent level of stimulation in a MLR. Ab production and class switch are unimpaired in TRAF2.DN mice. Thus, defects in the TRAF.DN mice appear to be limited to T cells. TRAF2.DN mice demonstrate an impaired T cell response to influenza virus, including decreased secondary expansion of IFN-gamma-secreting T cells as well as a decrease in CTL activity. CD4 T cell production of IL-2 was also dramatically impaired in TRAF2.DN mice. These studies suggest an essential role of TRAF2-linked receptors in secondary CD4 and CD8 T cell responses and have important implications for transplantation.  相似文献   

9.
Antagonist-like engagement of the TCR has been proposed to induce T cell selection in the thymus. However, no natural TCR ligand with TCR antagonist activity is presently known. Using a combination of bioinformatics and functional testing we identified the first self-peptide that can both deliver antagonist-like signals and promote T cell selection in the thymus. The peptide is presented by appropriate MHC class I molecules in vivo. Thus, endogenous antagonist peptides exist and may be involved in TCR repertoire selection.  相似文献   

10.
TCR gene rearrangement generates diversity of T lymphocytes by V(D)J recombination. Ig genes are rearranged in B cells using the same enzyme machinery. Physiologically, TCR gene is postulated to rearrange exclusively in T lineage, but malignant B precursor lymphoblasts contain rearranged TCR genes in most patients. Several mechanisms by which malignant cells break the regulation of V(D)J recombination have been proposed. In this study we show that incomplete TCR delta rearrangements V2-D3 and D2-D3 occur each in up to 16% alleles in B lymphocytes of all healthy donors studied, but complete VDJ rearrangement was negative at the sensitivity limit of 1%. Data are based on real-time quantitative PCR validated by PAGE and sequencing of the cloned products. Therefore, TCR genes rearrange not exclusively in T lineage. This study opens up further questions regarding the exact extent of the "cross-lineage" TCR or Ig rearrangements in normal lymphocytes, specific subsets in which the cross-lineage rearrangements occur, and the physiological importance of these rearrangements.  相似文献   

11.
Peptides presented via the class II MHC (MHCII) pathway are selected based on affinity for MHCII and stability in the presence of HLA-DM. Currently, epitope selection is thought to be controlled by the ability of peptide to sequester "anchor" residues into pockets in the MHCII. Residues exhibiting higher levels of solvent accessibility have been shown to contact TCR, but their roles in affinity and complex stability have not been directly studied. Using the HLA-DR1-binding influenza peptide, hemagglutinin (306-318), as a model, we show that side chain substitutions at these positions influence affinity and HLA-DM stability. Multiple substitutions reduce affinity to a greater extent than the loss of the major P1 anchor residue. We propose that these effects may be mediated through the H-bond network. These results demonstrate the importance of solvent-exposed residues in epitope selection and blur the distinctions between anchor and TCR contact residues.  相似文献   

12.
Upon encounter of a CTL with a target cell carrying foreign Ags, the TCR internalizes with its ligand, the peptide-MHC class I complex. However, it is unclear how this can happen mechanistically because MHC molecules are anchored to the target cell's surface via a transmembrane domain. By using antigenic peptides and lipids that were fluorescently labeled, we found that CTLs promptly capture target cell membranes together with the antigenic peptide as well as various other surface proteins. This efficient and specific capture process requires sustained TCR signaling. Our observations indicate that this process allows efficient acquisition of the Ag by CTL, which may in turn regulate lymphocyte activation or elimination.  相似文献   

13.
Efficient T cell activation depends on the engagement of both TCR and CD28, although the molecular mechanisms that control this signal integration are not fully understood. Using fluorescence resonance energy transfer, we show that T cell activation can drive a reorientation of the cytosolic tails of the CD28 dimer. However, this is not mediated through CD28 ligand binding. Rather, TCR signaling itself mediates this conformation change in CD28. We also show that TCR signaling can induce CD28-ligand interactions. Although the CD28 dimer appears to bind ligand monovalently in solution, we show that both ligand binding sites are required to efficiently recruit CD28 to the immunological synapse. These results suggest, that analogous to the cross-talk from TCR that regulates integrin activation, TCR-initiated inside-out signaling may induce a conformational change to the extracellular domains of CD28, enabling ligand binding and initiating CD28 signaling.  相似文献   

14.
15.
16.
17.
Slamf8 (CD353) is a cell surface receptor that is expressed upon activation of macrophages (MΦs) by IFN-γ or bacteria. In this article, we report that a very high NADPH oxidase (Nox2) enzyme activity was found in Slamf8(-/-) MΦs in response to Escherichia coli or Staphylococcus aureus, as well as to PMA. The elevated Nox2 activity in Slamf8(-/-) MΦs was also demonstrated in E. coli or S. aureus phagosomes by using a pH indicator system and was further confirmed by a reduction in the enzyme activity after transfection of the receptor into Slamf8-deficient primary MΦs or RAW 264.7 cells. Upon exposure to bacteria or PMA, protein kinase C activity in Slamf8(-/-) MΦs is increased. This results in an enhanced phosphorylation of p40phox, one key component of the Nox2 enzyme complex, which, in turn, leads to greater Nox2 activity. Taken together, the data show that, in response to inflammation-associated stimuli, the inducible receptor Slamf8 negatively regulates inflammatory responses.  相似文献   

18.
TLR ligands are among the key stimuli driving the optimal dendritic cell (DC) maturation critical for strong and efficacious T cell priming. In this study, we show that part of this effect occurs via increased TCR triggering. Pretreatment of DCs with TLR ligands resulted in the triggering of many more TCRs in responding CD8(+) T cells. Importantly, even when DCs expressed the same amount of cognate peptide-MHC (pMHC) molecules, TLR ligand treatment resulted in down-regulation of larger numbers of TCR molecules. This was independent of the up-regulation of costimulatory, adhesion or cytokine molecules or the amount of noncognate pMHCs. Rather, DCs pretreated with TLR ligands exhibited increased stability of cognate pMHCs, enabling extended TCR triggering. These findings are of potential importance to T cell vaccination.  相似文献   

19.
A point mutation in the Tlr4 gene, which encodes Toll-like receptor 4, has recently been proposed to underlie LPS hyporesponsiveness in C3H/HeJ mice (Lpsd). The data presented herein demonstrate that F1 progeny from crosses between mice that carry a approximately 9-cM deletion of chromosome 4 (including deletion of LpsTlr4) and C3H/HeJ mice (i.e., Lps0 x Lpsd F1 mice) exhibit a pattern of LPS sensitivity, measured by TNF activity, that is indistinguishable from that exhibited by Lpsn x Lpsd F1 progeny and whose average response is "intermediate" to parental responses. Thus, these data provide clear functional support for the hypothesis that the C3H/HeJ defect exerts a dominant negative effect on LPS sensitivity; however, expression of a normal Toll-like receptor 4 molecule is apparently not required.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号